Research on Object Detection and Recognition Method for UAV Aerial Images Based on Improved YOLOv5
Abstract
:1. Introduction
- Gabor filter banks are used to preprocess the edges of objects. We improve the traditional inefficient Gabor function by using discrete quantization. Due to the fact that a single Gabor convolution kernel can only enhance the edges of objects in a single direction, we utilize multiple improved Gabor convolution kernels (filters) to enhance the edges of objects from different directions. From the enhanced image, it can be seen that the redundant background is suppressed and the edge features of the object are obvious.
- CA is added to the backbone of YOLOv5. CA embeds spatial information of object features into channel information to reduce information loss and enable the network to accurately capture the long-range dependencies of positions. The introduction of CA is beneficial for the model in better identifying target areas, with good effectiveness in locating small targets.
- PANet is replaced by BiFPN on the neck of YOLOv5. Developed on the basis of PANet, in BiFPN (1) the network is simplified by deleting nodes without feature fusion and with little contribution to output, (2) an additional feature branch is added across intermediate nodes between the original input and output nodes in the same layer to fuse feature information from more layers, and (3) input feature layers with different resolutions are weighted to balance their respective contributions, which is beneficial for improving training speed and efficiency.
- The new dataset LSDUVD (Large-Scale Dataset Based on UCAS-AOD, VisDrone2019, and DOTA-V1.0) is obtained by integrating UCAS-AOD, VisDrone2019, and DOTA-V1.0 through data augmentation methods such as flipping, random cropping, and cutout.
2. Related Works
2.1. Object Detection
2.2. Image Preprocessing
2.3. Attention Mechanism
2.4. Feature Fusion
3. Methods
3.1. Overview of the Proposed Method
3.2. YOLOv5 Network Model
3.3. Improvement of YOLOv5 Model
3.3.1. Image Edge Preprocessing Based on Improved Gabor
3.3.2. Coordinate Attention Mechanism
3.3.3. Bidirectional Feature Fusion Network
4. Experiments and Results
4.1. Experimental Environment and Training Parameter Settings
4.2. Dataset Preparation
4.3. Performance Evaluation Indicators
4.4. Experimental and Results Analysis
4.4.1. Model Training Experiment
4.4.2. Ablation Experiment
4.4.3. Precision–Recall Rate Experiment
4.4.4. Comparison of Several Object Detection Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, H. Research Progress and Development of Deep Learning Based on Convolutional Neural Network. In Proceedings of the International Conference on Computing and Data Science, Stanford, CA, USA, 28–29 January 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Chen, Y.; Chen, X.; He, D.; Zheng, J.; Xu, C.; Lin, Y.; Liu, L. UAV Lightweight Object Detection Based on the Improved YOLO Algorithm. In Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 22–24 October 2021. [Google Scholar]
- Messmer, M.; Kiefer, B.; Zell, A. Gaining Scale Invariance in UAV Bird’s Eye View Object Detection by Adaptive Resizing. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), Montréal, QC, Canada, 21–25 August 2021. [Google Scholar]
- Yla, B.; Han, D.A.; Hong, D.; Zhang, X.A.; Bao, Z.E.; Zhi, X.F. Multi-block SSD based on small object detection for UAV railway scene surveillance. Chin. J. Aeronaut. 2020, 33, 1747–1755. [Google Scholar]
- Cai, H.; Xie, Y.; Xu, J.; Xiong, Z. A Lightweight and Accurate UAV Detection Method Based on YOLOv4. Sensors 2022, 22, 6874. [Google Scholar] [CrossRef]
- Wu, J.; Fan, P.; Sun, Y.; Gui, W. Ghost-Retina Net: Fast Shadow Detection Method for Photovoltaic Panels Based on Improved Retina Net. Comput. Model. Eng. Sci. 2023, 134, 1305–1321. [Google Scholar]
- Ullah, R.; Hayat, H.; Siddiqui, A.A.; Siddiqui, U.A.; Khan, J.; Ullah, F.; Hassan, S.; Hasan, L.; Albattah, W.; Islam, M. A Real-Time Framework for Human Face Detection and Recognition in CCTV Images. Math. Probl. Eng. 2022, 2022, 3276704. [Google Scholar] [CrossRef]
- Ubaid, M.T.; Saba, T.; Draz, H.U.; Rehman, A.; Ghani, M.U.; Kolivand, H. Intelligent Traffic Signal Automation Based on Computer Vision Techniques Using Deep Learning. IT Prof. 2022, 24, 17–33. [Google Scholar] [CrossRef]
- Jang, J.K.; Hwang, E.; Park, S.H. N-pad: Neighboring Pixel-based Industrial Anomaly Detection. arXiv 2022, arXiv:2210.08768. [Google Scholar]
- Luisi, B.; Hegab, R.; Person, C.; Seo, K.; Gleason, J. Engineered Biosensors in an Encapsulated and Deployable System for Environmental Chemical Detection. ACS Sens. 2022, 7, 2589–2596. [Google Scholar] [CrossRef]
- Barisic, A.; Car, M.; Bogdan, S. Vision-Based System for a Real-Time Detection and Following of UAV. In Proceedings of the 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), Cranfield, UK, 25–27 November 2019. [Google Scholar]
- Ren, J.; Wang, Y. Overview of Object Detection Algorithms Using Convolutional Neural Networks. Comput. Commun. 2022, 10, 115–132. [Google Scholar]
- Tavallali, M. A Systematic Training Procedure for Viola-Jones Face Detector in Heterogeneous Computing Architecture. J. Grid Comput. 2020, 18, 847–862. [Google Scholar] [CrossRef]
- Lu, Z.; Shi, Y. A Novel Target Detector of Marine Radar Based on HOG Feature. In Proceedings of the 2021 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 8–11 August 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Khemmar, R.; Delong, L.; Decoux, B. Real Time Pedestrian Detection-based Faster HOG/DPM and Deep Learning Approaches. Int. J. Comput. Appl. 2020, 176, 34–38. [Google Scholar] [CrossRef]
- Balbin, J.J.; Magwili, G.V.; Valiente, L.D.; Gawaran, D.L.; Lumapas, N.E.; Umali, A.M. Detection and Identification of Triple Phosphate Crystals and Calcium Oxalate Crystals in Human Urine Sediment Using Harr Feature, Adaptive Boosting and Support Vector Machine via Open CV. In Proceedings of the 2020 10th International Conference on Biomedical Engineering and Technology, Tokyo, Japan, 15–18 September 2020. [Google Scholar]
- Wang, H.; Li, Z.S. An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2022, 236, 495–507. [Google Scholar] [CrossRef]
- Bakheet, S.; Al-Hamadi, A. A Framework for Instantaneous Driver Drowsiness Detection Based on Improved HOG Features and Nave Bayesian Classification. Brain Sci. 2021, 2, 240. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Liu, G.; Wang, K.; Si, Y. Cow identification in free-stall barns based on an improved Mask R-CNN and an SVM. Comput. Electron. Agric. 2022, 194, 106738. [Google Scholar] [CrossRef]
- Battiato, S.; Gallo, G.; Schettini, R.; Stanco, F. A System for Autonomous Landing of a UAV on a Moving Vehicle. In Image Analysis and Processing—ICIAP; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; Volume 10484. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chen, T.H.; Chuang, J.H.; Liao, I.C. Pedestrian Detection in Aerial Images Using Vanishing Point Transformation and Deep Learning. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1917–1921. [Google Scholar]
- Berg, A.C.; Fu, C.Y.; Szegedy, C.; Anguelov, D.; Erhan, D.; Reed, S.; Liu, W. SSD: Single Shot MultiBox Detector. arXiv 2015, arXiv:1512.02325. [Google Scholar]
- Wen, H.B.; Zhang, G.H. Object Detection on YOLO for Vehicle Camera Videos. Auto Sci.-Technol. 2019, 112, 73–76+72. [Google Scholar]
- Xie, X.; Cheng, G.; Wang, J.; Yao, X.; Han, J. Oriented R-CNN for Object Detection. arXiv 2021, arXiv:2108.05699. [Google Scholar]
- Jiang, L.; Chen, J.; Todo, H.; Tang, Z.; Liu, S.; Li, Y. Application of a Fast RCNN Based on Upper and Lower Layers in Face Recognition. Comput. Intell. Neurosci. 2021, 2021, 9945934. [Google Scholar] [CrossRef]
- Sri, M.S.; Naik, B.R.; Sankar, K.J. Object Detection Based on Faster R-Cnn. Int. J. Eng. Adv. Technol. 2021, 10, 72–76. [Google Scholar] [CrossRef]
- Pei, T.; Wu, X. Object proposals detection. In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016, arXiv:1506.02640. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H. YOLOv4: Optimal Speed and Precision of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Dong, X.; Yan, S.; Duan, C. A lightweight vehicles detection network model based on YOLOv5. Eng. Appl. Artif. Intell. Int. J. Intell. Real-Time Autom. 2022, 113, 104914. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, H. A Safety Vehicle Detection Mechanism Based on YOLOv5. In Proceedings of the 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud), Newark, NJ, USA, 6–8 November 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Zhou, B.; Fan, Y.C.; Liu, Y.X.; Yin, X.D. Multi-operator feature enhancement methods for industrial defect detection. J. Phys. Conf. Ser. 2021, 2078, 012030. [Google Scholar] [CrossRef]
- Chousangsuntorn, C.; Tongloy, T.; Chuwongin, S.; Boonsang, S. A Deep Learning System for Recognizing and Recovering Contaminated Slider Serial Numbers in Hard Disk Manufacturing Processes. Sensors 2021, 21, 6261. [Google Scholar] [CrossRef]
- Bai, J.; Li, Y.; Lin, L.; Chen, L. Mobile Terminal Implementation of Image Filtering and Edge Detection Based on OpenCV. In Proceedings of the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 25–27 August 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Gopalakrishnan, C.; Iyapparaja, M. Active contour with modified Otsu method for automatic detection of polycystic ovary syndrome from ultrasound image of ovary. Multimed. Tools Appl. 2020, 79, 17169–17192. [Google Scholar] [CrossRef]
- Setiawan, W.; Purnama, A. Tobacco Leaf Images Clustering using DarkNet19 and K-Means. In Proceedings of the 2020 6th Information Technology International Seminar (ITIS), Surabaya, Indonesia, 14–16 October 2020. [Google Scholar]
- Hou, Y.; Ma, Z.; Liu, C.; Wang, Z.; Chen, C.L. Network Pruning via Resource Reallocation. arXiv 2021, arXiv:2103.01847. [Google Scholar]
- Akiba, T.; Suzuki, S.; Fukuda, K. Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes. arXiv 2017, arXiv:1711.04325. [Google Scholar]
- Zhao, C.; Shuai, R.; Ma, L.; Liu, W.; Wu, M. Dermoscopy Image Classification Based on StyleGAN and DenseNet201. IEEE Access 2021, 99, 1. [Google Scholar] [CrossRef]
- Rehman, K.U.; Li, J.; Pei, Y.; Yasin, A.; Ali, S.; Mahmood, T. Computer Vision-Based Microcalcification Detection in Digital Mammograms Using Fully Connected Depthwise Separable Convolutional Neural Network. Sensors 2021, 21, 4854. [Google Scholar] [CrossRef] [PubMed]
- Gendall, L.; Schroeder, S.B.; Wills, P.; Hessing-Lewis, M.; Costa, M. A Multi-Satellite Mapping Framework for Floating Kelp Forests. Remote Sens. 2023, 15, 1276. [Google Scholar] [CrossRef]
- Ayush Kumar, C.S.; Maharana, A.D.; Krishnan, S.M.; Hanuma, S.S.S.; Sowmya, V.; Ravi, V. Vehicle Detection from Aerial Imagery Using Principal Component Analysis and Deep Learning. In Innovations in Bio-Inspired Computing and Applications; IBICA; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; Volume 649. [Google Scholar] [CrossRef]
- Li, Z. Road Aerial Object Detection Based on Improved YOLOv5. JPhCS 2022, 2171, 012039. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhang, X.; Ma, M. A novel attention-based network for fast salient object detection. arXiv 2021, arXiv:2112.10481. [Google Scholar]
- Huang, M.; Cheng, C.; Luca, G.D. Remote Sensing Data Detection Based on Multiscale Fusion and Attention Mechanism. Mob. Inf. Syst. 2021, 23, 3847. [Google Scholar] [CrossRef]
- Dong, M.; Wei, S.; Yin, J.; Yu, X. Real-World Semantic Grasp Detection Based on Attention Mechanism. arXiv 2021, arXiv:2111.10522. [Google Scholar]
- Wang, Y.; Zhang, Z.; Zhang, N.; Zeng, D. Attention Modulated Multiple Object Tracking with Motion Enhancement and Dual Correlation. Symmetry 2021, 13, 266. [Google Scholar] [CrossRef]
- Yang, H.H.; Huang, K.C.; Chen, W.T. LAFFNet: A Lightweight Adaptive Feature Fusion Network for Underwater Image Enhancement. arXiv 2021, arXiv:2105.01299. [Google Scholar]
- Shamsolmoali, P.; Chanussot, J.; Zareapoor, M.; Zhou, H.; Yang, J. Multipatch Feature Pyramid Network for Weakly Supervised Object Detection in Optical Remote Sensing Images. arXiv 2021, arXiv:2108.08063. [Google Scholar] [CrossRef]
- Yu, G.; Wu, Y.; Xiao, J.; Cao, Y. A Novel Pyramid Network with Feature Fusion and Disentanglement for Object Detection. Comput. Intell. Neurosci. 2021, 2021, 6685954. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, D.; Zhang, Y.; Sun, Q.; Xu, H.; Jing, L. Improving Object Detection with Feature Fusion Methods. Int. J. Artif. Intell. Tools 2022, 31, 2260006. [Google Scholar] [CrossRef]
- Wu, S.; Wang, X.; Guo, C. Application of Feature Pyramid Network and Feature Fusion Single Shot Multibox Detector for Real-Time Prostate Capsule Detection. Electronics 2023, 12, 1060. [Google Scholar] [CrossRef]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. arXiv 2021, arXiv:2103.02907. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. arXiv 2018, arXiv:1803.01534. [Google Scholar]
- Tadic, V.; Popovic, M.; Odry, P. Fuzzified Gabor filter for license plate detection. Eng. Appl. Artif. Intell. 2016, 48, 40–58. [Google Scholar] [CrossRef]
- Pellegrino, F.A.; Vanzella, W.; Torre, V. Edge detection revisited. IEEE Trans. Syst. Man Cybern. 2004, 34, 1500–1518. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, R.; Namuduri, K.R.; Ranganathan, N. Gabor filter-based edge detection. Pattern Recognit. 1992, 25, 1479–1494. [Google Scholar] [CrossRef]
- Jiang, W.; Lam, K.M.; Shen, T.Z. Efficient Edge Detection Using Simplified Gabor Wavelets. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 1036–1047. [Google Scholar] [CrossRef]
- Wang, C.; Bai, X.; Zhou, L.; Zhou, J. Hyperspectral Image Classification Based on Non-Local Neural Networks. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Zhu, H.; Chen, X.; Dai, W.; Fu, K.; Ye, Q.; Jiao, J. Orientation robust object detection in aerial images using deep convolutional neural network. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015. [Google Scholar]
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-scale Dataset for Object Detection in Aerial Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Bai, H.; Wen, S.; Chan, S. Crowd Counting on Images with Scale Variation and Isolated Clusters. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Wang, P.; Sun, X.; Diao, W.; Fu, K. FMSSD: Feature-Merged Single-Shot Detection for Multiscale Objects in Large-Scale Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3377–3390. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 99, 2999–3007. [Google Scholar]
Parameter | Configuration |
---|---|
Integrated development environment | PyCharm |
Scripting language | Python3.8 |
Deep learning frame | PyTorch1.9.1 |
CPU model | Intel Core i7-9700k |
Operating system | Ubuntu18.04 LTS 64-bits |
GPU model | NVIDIA GeForce RTX 3090Ti |
GPU accelerator | CUDA 10.2 |
Neural network accelerator | cuDNN7.6.5 |
Parameter | Configuration |
---|---|
Neural network optimizer | SGD |
Learning rate | 0.001 |
Training epochs | 1600 |
Momentum | 0.937 |
Batch size | 32 |
Weight decay | 0.0005 |
Baseline | Gabor | CA | BiFPN | Dataset | |||||
---|---|---|---|---|---|---|---|---|---|
YOLOv5s | LSDUVD | 80.4 | 82.4 | 85.8 | 81.9 | 64.3 | |||
√ | LSDUVD | 82.1 | 83.2 | 86.7 | 83.5 | 66.1 | |||
√ | LSDUVD | 83.7 | 83.7 | 86.1 | 84.2 | 67.2 | |||
√ | LSDUVD | 81.1 | 84.0 | 87.5 | 84.5 | 67.7 | |||
√ | √ | √ | LSDUVD | 85.3 | 88.1 | 90.2 | 85.7 | 69.5 |
Target Category | Methods (AP (%)) | |||||||
---|---|---|---|---|---|---|---|---|
SSD | FMSSD | Faster-RCNN | RetinaNet | YOLOv3 | YOLOv4 | YOLOv5s | Ours | |
PE | 81.9 | 89.1 | 75.7 | 87.2 | 90.5 | 93.1 | 91.5 | 94.7 |
SP | 69.2 | 76.9 | 75.2 | 71.7 | 82.7 | 82.3 | 80.8 | 87.6 |
BE | 59.2 | 68.2 | 55.0 | 67.0 | 77.2 | 68.1 | 73.2 | 79.6 |
HR | 64.5 | 72.4 | 67.3 | 71.8 | 77.8 | 81.9 | 83.0 | 85.7 |
HP | 71.8 | 70.2 | 68.8 | 67.7 | 82.0 | 83.8 | 66.9 | 64.9 |
RT | 73.5 | 67.5 | 79.2 | 56.2 | 71.6 | 67.7 | 79.2 | 82.9 |
ST | 74.5 | 73.7 | 68.4 | 70.2 | 60.7 | 68.5 | 76.9 | 84.2 |
TC | 89.6 | 90.7 | 85.6 | 95.3 | 94.3 | 94.6 | 93.0 | 94.5 |
BD | 81.3 | 81.5 | 77.5 | 90.6 | 64.0 | 67.1 | 73.4 | 89.5 |
SV | 63.0 | 79.2 | 60.8 | 70.7 | 70.3 | 70.8 | 75.2 | 86.6 |
LV | 59.4 | 73.6 | 79.0 | 83.0 | 79.9 | 81.1 | 88.9 | 90.2 |
SL | 65.6 | 80.6 | 66.7 | 70.7 | 88.6 | 74.0 | 71.0 | 76.6 |
BC | 72.2 | 82.7 | 74.2 | 88.5 | 72.8 | 65.9 | 83.6 | 87.4 |
SBF | 74.5 | 78.7 | 58.4 | 87.9 | 70.7 | 72.9 | 77.3 | 86.2 |
GTF | 79.9 | 67.9 | 74.7 | 79.7 | 59.7 | 62.8 | 73.6 | 77.3 |
PN | 58.5 | 70.3 | 64.5 | 72.1 | 60.7 | 61.7 | 64.0 | 72.7 |
MT | 65.5 | 78.1 | 63.1 | 67.5 | 77.1 | 80.2 | 76.3 | 78.5 |
BI | 70.2 | 79.3 | 70.2 | 73.9 | 70.6 | 75.1 | 74.1 | 75.9 |
ATE | 68.7 | 54.7 | 62.1 | 68.2 | 55.7 | 70.3 | 63.0 | 71.6 |
TE | 67.2 | 71.1 | 58.5 | 64.8 | 60.5 | 66.2 | 82.1 | 84.7 |
PR | 73.5 | 73.7 | 69.5 | 52.1 | 80.5 | 79.9 | 69.0 | 65.3 |
VN | 51.4 | 79.5 | 61.5 | 67.2 | 78.9 | 70.1 | 71.1 | 84.6 |
BS | 64.7 | 67.2 | 58.5 | 65.5 | 77.1 | 80.7 | 70.2 | 79.7 |
(%) | 69.6 | 75.1 | 68.4 | 73.5 | 74.1 | 74.7 | 76.4 | 81.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Shao, F.; He, X.; Zhang, Z.; Cai, Y.; Bi, S. Research on Object Detection and Recognition Method for UAV Aerial Images Based on Improved YOLOv5. Drones 2023, 7, 402. https://doi.org/10.3390/drones7060402
Zhang H, Shao F, He X, Zhang Z, Cai Y, Bi S. Research on Object Detection and Recognition Method for UAV Aerial Images Based on Improved YOLOv5. Drones. 2023; 7(6):402. https://doi.org/10.3390/drones7060402
Chicago/Turabian StyleZhang, Heng, Faming Shao, Xiaohui He, Zihan Zhang, Yonggen Cai, and Shaohua Bi. 2023. "Research on Object Detection and Recognition Method for UAV Aerial Images Based on Improved YOLOv5" Drones 7, no. 6: 402. https://doi.org/10.3390/drones7060402
APA StyleZhang, H., Shao, F., He, X., Zhang, Z., Cai, Y., & Bi, S. (2023). Research on Object Detection and Recognition Method for UAV Aerial Images Based on Improved YOLOv5. Drones, 7(6), 402. https://doi.org/10.3390/drones7060402