Plasmonic Nanopores as Tunable Optical Platforms for Single-Molecule Detection †
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahlin, B. Sensing applications based on plasmonic nanopores: The hole story. Analyst 2015, 140, 4748–4759. [Google Scholar] [CrossRef] [PubMed]
- Brolo, G.; Arctander, E.; Gordon, R.; Leathem, B.; Kavanagh, K.L. Nanohole-Enhanced Raman Scattering. Nano Lett. 2018, 4, 2012–2015. [Google Scholar] [CrossRef]
- Zhu, X.; Cao, N.; Thibeault, B.J.; Pinsky, B.; Yanik, A.A. Mechanisms of Fano-resonant biosensing: Mechanical loading of plasmonic oscillators. Opt. Commun. 2020, 469, 125780. [Google Scholar] [CrossRef]
- De Aberasturi, D.J.; Serrano-Montes, A.B.; Liz-Marzán, L.M. Modern Applications of Plasmonic Nanoparticles: From Energy to Health. Adv. Opt. Mater. 2015, 3, 602–617. [Google Scholar] [CrossRef]
- Lospinoso, D.; Colombelli, A.; Lomascolo, M.; Rella, R.; Manera, M.G. Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection. Nanomaterials 2022, 12, 380. [Google Scholar] [CrossRef] [PubMed]
- Colombelli; Lospinoso, D.; Taurino, A.; Manera, M.G. Tailoring a periodic metal nanoantenna array using low cost template-assisted lithography. J. Mater. Chem. C 2019, 7, 13818–13828. [Google Scholar] [CrossRef]
- Colombelli; Lospinoso, D.; Rella, R.; Manera, M.G. Shape Modulation of Plasmonic Nanostructures by Unconventional Lithographic Technique. Nanomaterials 2022, 12, 547. [Google Scholar] [CrossRef] [PubMed]
- Cesaria, M.; Colombelli, A.; Lospinoso, D.; Taurino, A.; Melissano, E.; Rella, R.; Manera, M.G. Long- and Short-Range Ordered Gold Nanoholes as Large-Area Optical Transducers in Sensing Applications. Chemosensors 2019, 7, 13. [Google Scholar] [CrossRef]
- Couture, M.; Liang, Y.; Richard, H.P.P.; Faid, R.; Pengand, W.; Masson, J.F. Tuning the 3D plasmon field of nanohole arrays. Nanoscale 2013, 5, 1239. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombelli, A.; Lospinoso, D.; Manera, M.G. Plasmonic Nanopores as Tunable Optical Platforms for Single-Molecule Detection. Proceedings 2024, 97, 154. https://doi.org/10.3390/proceedings2024097154
Colombelli A, Lospinoso D, Manera MG. Plasmonic Nanopores as Tunable Optical Platforms for Single-Molecule Detection. Proceedings. 2024; 97(1):154. https://doi.org/10.3390/proceedings2024097154
Chicago/Turabian StyleColombelli, Adriano, Daniela Lospinoso, and Maria Grazia Manera. 2024. "Plasmonic Nanopores as Tunable Optical Platforms for Single-Molecule Detection" Proceedings 97, no. 1: 154. https://doi.org/10.3390/proceedings2024097154
APA StyleColombelli, A., Lospinoso, D., & Manera, M. G. (2024). Plasmonic Nanopores as Tunable Optical Platforms for Single-Molecule Detection. Proceedings, 97(1), 154. https://doi.org/10.3390/proceedings2024097154