Multi-Sensor System for Saffron Quality Identification †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumari, L.; Jaiswal, P.; Tripathy, S.S. Various techniques useful for determination of adulterants in valuable saffron: A review. Trends Food Sci. Technol. 2021, 111, 301–321. [Google Scholar] [CrossRef]
- Amanpour, A.; Sonmezdag, A.S.; Kelebek, H.; Selli, S. GC-MS-olfactometric characterization of the most aroma-active components in a representative aromatic extract from Iranian saffron (Crocus sativus L.). Food Chem. 2015, 182, 251–256. [Google Scholar] [CrossRef]
- Di Natale, C.; Zude-Sasse, M.; Macagnano, A.; Paolesse, R.; Herold, B.; D’Amico, A. Outer product analysis of electronic nose and visible spectra: Application to the measurement of peach fruit characteristics. Anal. Chim. Acta 2002, 459, 107–117. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capuano, R.; Serafini, C.; Papale, L.; Allegra, V.; Di Natale, C.; Catini, A. Multi-Sensor System for Saffron Quality Identification. Proceedings 2024, 97, 103. https://doi.org/10.3390/proceedings2024097103
Capuano R, Serafini C, Papale L, Allegra V, Di Natale C, Catini A. Multi-Sensor System for Saffron Quality Identification. Proceedings. 2024; 97(1):103. https://doi.org/10.3390/proceedings2024097103
Chicago/Turabian StyleCapuano, Rosamaria, Chiara Serafini, Leonardo Papale, Valerio Allegra, Corrado Di Natale, and Alexandro Catini. 2024. "Multi-Sensor System for Saffron Quality Identification" Proceedings 97, no. 1: 103. https://doi.org/10.3390/proceedings2024097103
APA StyleCapuano, R., Serafini, C., Papale, L., Allegra, V., Di Natale, C., & Catini, A. (2024). Multi-Sensor System for Saffron Quality Identification. Proceedings, 97(1), 103. https://doi.org/10.3390/proceedings2024097103