A QFT Approach to Data Streaming in Natural and Artificial Neural Networks †
Abstract
:1. Introduction: The Infinitely Many Degrees of Freedom in Data Streaming
2. The Analogy with the Infinitary Character of QFT Dynamics in Brains
3. From Natural to Artificial Quantum Neural Net Dynamics
4. Conclusion: A Possible Quantum Optics Implementation of the DDF Algorithm
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rutkowski, L.; Jaworski, M.; Duda, P. Probabilistic Neural Networks for the Streaming Data Classification. In Stream Data Mining: Algorithms and Their Probabilistic Properties. Studies in Big Data; Springer: Cham, Switzerland, 2020; Volume 56, pp. 245–277. [Google Scholar]
- Bifet, A.; Gavalda, V.; Holmes, G.; Pfahringer, B. Machine Learning for Data Streams with Practical Examples in MOA.; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Gama, J. A survey on learning from data streams: Current and future trends. Prog. Artif. Intell. 2012, 1, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, C. Data Streams: Models and Algorithms; Springer: New York, NY, USA, 2007. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.A.; Andriyash, E.; Rolfe, J.; Kulchytskyy, B.; Melko, R. Quantum Boltzmann Machine. Phys. Rev. X 2018, 8, 021050. [Google Scholar] [CrossRef] [Green Version]
- Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural networks. Nat. Commun. 2020, 11, 808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, V. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, T.; Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 1998, 58, 5355. [Google Scholar] [CrossRef] [Green Version]
- Morita, S.; Nishimori, H. Mathematical foundation of quantum annealing. J. Math. Phys. 2008, 49, 125210. [Google Scholar] [CrossRef]
- Heim, B.; Rønnow, T.F.; Isakov, S.V.; Troyer, M. Quantum versus classical annealing of Ising spin glasses. Science 2015, 348, 215–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haag, R. On quantum field theories. Mat. Fys. Medd. 1995, 29, 1–37. [Google Scholar]
- Bogoliubov, N.N. On a new method in the theory of superconductivity. Nuovo Cim. 1958, 7, 794–805. [Google Scholar] [CrossRef]
- Bogoliubov, N.N.; Tolmachev, V.V.; Shirkov, D.V. A New Method in the Theory of Superconductivity; Consultants Bureau Inc.: New York, NY, USA; Chapman & Hall: London, UK, 1959. [Google Scholar]
- Takahashi, Y.; Umezawa, H. Thermo-Field Dynamics. Collect. Phenom. 1975, 2, 55–80. [Google Scholar] [CrossRef]
- Umezawa, H. Advanced Field Theory: Micro, Macro and Thermal; American Institute of Physics: New York, NY, USA, 1993. [Google Scholar]
- Umezawa, H. Development in concepts in quantum field theory in half century. Math. Jpn. 1995, 41, 109–124. [Google Scholar]
- Pessa, E.; Vitiello, G. Quantum dissipation and neural net dynamics. Biochem. Bioenergy 1999, 48, 339–342. [Google Scholar] [CrossRef] [Green Version]
- Vitiello, G. Neural networks and many/body sytems. Essays in honor of Eliano Pessa. In Multiplicity and Interdisciplinarity; Minati, G., Ed.; Springer: Cham, Switzerland, 2021; in press. [Google Scholar]
- Basti, G.; Capolupo, A.; Vitiello, G. Quantum Field Theory and Coalgebraic Logic in Theoretical Computer Science. Prog. Biophys. Mol. Biol. 2017, 130 Pt A, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Jizba, P.; Vitiello, G. Quantum Field Theory and Its Macroscopic Manifestations. Boson Condensations, Orderd Patterns and Topological Defects; Imperial College Press: London, UK, 2011. [Google Scholar]
- Vitiello, G. My Double Unveiled; John Benjamins Publishing Co.: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Rutten, J.J.M. Universal coalgebra: A theory of systems. Theor. Comput. Sci. 2000, 249, 3–80. [Google Scholar] [CrossRef] [Green Version]
- Nambu, Y. Quasiparticles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev. 1960, 117, 648–663. [Google Scholar] [CrossRef]
- Goldstone, J. Field Theories with Superconductor Solutions. Nuovo Cim. 1961, 19, 154–164. [Google Scholar] [CrossRef]
- Keitel, C.H.; Wodkiewicz, K. Measuring information via Glauber’s Q-representation. In Proceedings of the Second International Workshop on Squeezed States and Uncertainty Relations; Hahn, D., Kim, J.S., Manko, V.I., Eds.; Goddard Space Flight Center Publications: Greenbelt, MD, USA, 1993. [Google Scholar]
- Basti, G.; Bentini, G.; Chiarini, M.; Parini, A.; Artoni, A.; Braglia, F.; Braglia, S.; Farabegoli, S. Sensor for security and safety applications based on a fully integrated monolithic electro-optical programmable microdiffractive device. In Electro-Optical and Infrared Systems: Technology and Applications XVI; SPIE Publications: Strasbourg, France, 2019; Volume 11159, pp. 1–11. [Google Scholar]
- Parini, A.; Chiarini, M.; Basti, G.; Bentini, G. Lithium niobate-based programmable micro-diffraction device for wavelength-selective switching applications. In Emerging Imaging and Sensing Technologies for Security and Defence IV; SPIE Publications: Strasbourg, France, 2019; Volume 11630, pp. 1–10. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basti, G.; Vitiello, G. A QFT Approach to Data Streaming in Natural and Artificial Neural Networks. Proceedings 2022, 81, 106. https://doi.org/10.3390/proceedings2022081106
Basti G, Vitiello G. A QFT Approach to Data Streaming in Natural and Artificial Neural Networks. Proceedings. 2022; 81(1):106. https://doi.org/10.3390/proceedings2022081106
Chicago/Turabian StyleBasti, Gianfranco, and Giuseppe Vitiello. 2022. "A QFT Approach to Data Streaming in Natural and Artificial Neural Networks" Proceedings 81, no. 1: 106. https://doi.org/10.3390/proceedings2022081106
APA StyleBasti, G., & Vitiello, G. (2022). A QFT Approach to Data Streaming in Natural and Artificial Neural Networks. Proceedings, 81(1), 106. https://doi.org/10.3390/proceedings2022081106