Genetic Analysis Algorithm for the Study of Patients with Multiple Congenital Anomalies and Isolated Congenital Heart Disease †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Patients
2.3. Algorithm Used for Patients’ Analyses
2.4. Cytogenetic Analysis
2.5. Multiplex-Dependent Ligation Probe Amplification Analysis (MLPA)
2.6. Chromosomal Microarray Analysis (CMA)
2.7. Next Generation Sequencing (NGS) Analysis
3. Results and Discussion
4. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
References
- Centers for Disease Control and Prevention (CDC). Update on Overall Prevalence of Major Birth Defects—Atlanta, Georgia, 1978–2005. MMWR Morb. Mortal. Wkly. Rep. 2008, 57, 1–5. Available online: https://www.ncbi.nlm.nih.gov/pubmed/18185492 (accessed on 19 February 2021).
- Szczałuba, K.; Demkow, U. Array comparative genomic hybridization and genomic sequencing in the diagnostics of the causes of congenital anomalies. J. Appl. Genet. 2017, 58, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Winter, R.M.; Baraitser, M. Multiple Congenital Anomalies: A Diagnostic Compendium. Springer: Berlin/Heidelberg, Germany. 2013. Available online: https://play.google.com/store/books/details?id=2XP1BwAAQBAJ (accessed on 19 February 2021).
- Groisman, B.; Bidondo, M.P.; Barbero, P.; Gili, J.A.; Liascovich, R. RENAC: Registro Nacional de Anomalías Congénitas de Argentina. Archivos Argentinos de Pediatría. 2013, 111, 484–494. Available online: https://www.researchgate.net/profile/Juan_Gili/publication/262762073_RENAC_Registro_Nacional_de_Anomalias_Congenitas_de_Argentina/links/53da661b0cf2631430c8235b.pdf (accessed on 19 February 2021). [PubMed]
- Agopian, A.J.; Evans, J.A.; Lupo, P.J. Analytic Methods for Evaluating Patterns of Multiple Congenital Anomalies in Birth Defect Registries. Birth Defects Res. 2018, 110, 5–11. [Google Scholar] [CrossRef]
- Michelson, D.J.; Clark, R.D. Optimizing Genetic Diagnosis of Neurodevelopmental Disorders in the Clinical Setting. Clin. Lab. Med. 2020, 40, 231–256. [Google Scholar] [CrossRef] [PubMed]
- Zeitlin, J.; Mohangoo, A.; Cuttini, M.; EUROPERISTAT Report Writing Committee; Alexander, S.; Barros, H.; Blondel, B.; Bouvier-Colle, M.H.; Buitendijk, S.; Cans, C.; et al. The European Perinatal Health Report: Comparing the health and care of pregnant women and newborn babies in Europe. J. Epidemiol. Community Health 2009, 63, 681–682. [Google Scholar] [CrossRef]
- Lu, X.-Y.; Phung, M.T.; Shaw, C.A.; Pham, K.; Neil, S.E.; Patel, A.; Sahoo, T.; Bacino, C.A.; Stankiewicz, P.; Kang, S.-H.L.; et al. Genomic imbalances in neonates with birth defects: High detection rates by using chromosomal microarray analysis. Pediatrics 2008, 122, 1310–1318. [Google Scholar] [CrossRef]
- Miller, D.T.; Adam, M.P.; Aradhya, S.; Biesecker, L.G.; Brothman, A.R.; Carter, N.P.; Church, D.M.; Crolla, J.A.; Eichler, E.E.; Epstein, C.J.; et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010, 86, 749–764. [Google Scholar] [CrossRef]
- Pierpont, M.E.; Brueckner, M.; Chung, W.K.; Garg, V.; Lacro, R.V.; McGuire, A.L.; Mital, S.; Priest, J.R.; Pu, W.T.; Roberts, A.; et al. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement from the American Heart Association. Circulation 2018, 138, e653–e711. [Google Scholar] [CrossRef]
- DeLea, M.; Espeche, L.D.; Bruque, C.D.; Bidondo, M.P.; Massara, L.S.; Oliveri, J.; Brun, P.; Cosentino, V.R.; Martinoli, C.; Tolaba, N.; et al. Genetic Imbalances in Argentinean Patients with Congenital Conotruncal Heart Defects. Genes 2018, 9, 454. [Google Scholar] [CrossRef]
- Vianna, G.S.; Medeiros, P.F.V.; Alves, A.F.; Silva, T.O.; Jehee, F.S. Array-CGH analysis in patients with intellectual disability and/or congenital malformations in Brazil. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Lay-Son, G.; Espinoza, K.; Vial, C.; Rivera, J.C.; Guzmán, M.L.; Repetto, G.M. Chromosomal microarrays testing in children with developmental disabilities and congenital anomalies. J. Pediatr. 2015, 91, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Zanardo, E.A.; Dutra, R.L.; Piazzon, F.B.; Dias, A.T.; Novo-Filho, G.M.; Nascimento, A.M.; Montenegro, M.M.; Damasceno, J.G.; Madia, F.A.R.; Da Costa, T.V.M.M.; et al. Cytogenomic assessment of the diagnosis of 93 patients with developmental delay and multiple congenital abnormalities: The Brazilian experience. Clinics 2017, 72, 526–537. [Google Scholar] [CrossRef]
- McGowan-Jordan, J.; Simons, A.; Schmid, M. ISCN 2016: An International System for Human Cytogenomic Nomenclature (2016). Karger 2016. [Google Scholar] [CrossRef]
- Espeche, L.D.; Solari, A.P.; Mori, M.Á.; Arenas, R.M.; Palomares-Bralo, M.; Pérez, M.; Martínez, C.; Lotersztein, V.; Segovia, M.; Armando, R.; et al. Implementation of chromosomal microarrays in a cohort of patients with intellectual disability at the Argentinean public health system. Mol. Biol. Rep. 2020. [Google Scholar] [CrossRef]
- Massara, L.S.; DeLea, M.; Espeche, L.; Bruque, C.D.; Oliveri, J.; Brun, P.; Furforo, L.; Dain, L.; Rozental, S. Double Autosomal/Gonosomal Mosaic Trisomy 47,XXX/47,XX,+14 in a Newborn with Multiple Congenital Anomalies. Cytogenet Genome Res. 2019, 159, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Santos, M.V.P.F.; Gamba, B.F.; Empke, S.L.L.; de Oliveira Alves, C.C.; Bérgamo, N.A.; Ribeiro-Bicudo, L.A. Congenital Heart Disease Revealing Familial 22q11 Deletion Syndrome. Int. J. Cardiovasc. Sci. 2020, 33, 425–426. [Google Scholar] [CrossRef]
- Jiang, L.; Hou, Z.; Duan, C.; Chen, B.; Chen, Z.; Li, Y.; Huan, Y.; Wu, K.K. Isolated congenital heart disease is associated with the 22q11 deletion even though it is rare. Int. J. Cardiol. 2010, 284–285. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 245–257. [Google Scholar] [CrossRef]
- Szczałuba, K.; Nowakowska, B.; Sobecka, K.; Smyk, M.; Castaneda, J.; Klapecki, J.; Kutkowska-Kaźmierczak, A.; Śmigiel, R.; Bocian, E.; Radkowski, M.; et al. Application of Array Comparative Genomic Hybridization in Newborns with Multiple Congenital Anomalies. Adv. Exp. Med. Biol. 2016, 912, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mendez, R.; Delea, M.; Dain, L.; Rittler, M. A novel pathogenic frameshift variant of KAT6B identified by clinical exome sequencing in a newborn with the Say–Barber–Biesecker–Young–Simpson syndrome. Clin. Dysmorphol. 2020, 29, 42. [Google Scholar] [CrossRef] [PubMed]
Imbalances | CCHD MCA | iCCHD | Suspected 22q11DS | Total |
---|---|---|---|---|
None | 18 | 60 | 27 | 105 |
Del 22q11 (3Mb) | 5 | 13 | 31 | 21 |
Del 22q11 (1.5Mb) | 1 | 2 | - | 3 |
Dup 22q11 (1.5Mb) | 1 | 1 | - | 2 |
Del 22q11.2 (TBX1) | - | 1 | - | 1 |
Total | 25 | 77 | 30 | 132 |
ACMG | Patients | Imbalances | Size (Mb) | OMIM # |
---|---|---|---|---|
Pathogenic | 14 | Del 1p36.33p36.23; Dup 7q35q36.31,2 | 7.10; 12.2 | 607,872 |
Del 2q24.2q31.1 | 13.73 | - | ||
Del 2q14.2q14.3 | 7 | - | ||
Del 5q22.23 | 0.02 | - | ||
Del 7q36.1q36.31 | 10.06 | - | ||
Dup 7q11.23 | 1.27 | 609,757 | ||
Del 8q21.11q21.32,4 | 11.19 | 614,230 | ||
Del 9q22.2q31.1 | 12 | - | ||
T131 | - | - | ||
Del 15q14 | 6.22 | 616,898 | ||
Del 16p12.2 | 0.57 | 136,570 | ||
T181 | - | - | ||
Dup Xp22.33 | 1.7 | - | ||
TX, T145 | - | - | ||
Likely Pathogenic | 2 | Del 3p21.31 | 4.1 | - |
Del 17q25.3 | 0.50 | - |
Gene | ACMG | Protein Change | Phenotype |
---|---|---|---|
SHH | Likely Pathogenic | p.His270Tyr1 | MCA |
MYH11 | Pathogenic | p.? 1,2 | MCA |
PTPN11 | Pathogenic | p.(Ala461Thr) | MCA3 |
FOXL2 | Likely Pathogenic | p.(Tyr215Cys) | MCA |
PTPN11 | Pathogenic | p.Asn308Asp | MCA |
EP300 | Pathogenic | p.(Gln2361Ter)1 | MCA4 |
PTPN11 | Pathogenic | p.(Asp61Asn) | MCA3 |
KAT6B | Pathogenic | p.(Thr1525IlefsTer25)1 | MCA5 |
MYBPC3 | Likely Pathogenic | p.(Arg726Cys) | MCA/iCHD 3 |
RAF1 | Pathogenic | p.(Ser257Leu) | iCHD3 |
MYH7 | Likely Pathogenic | p.(Asn224Ile)1 | iCHD3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delea, M.; Massara, L.S.; Espeche, L.D.; Bidondo, M.P.; Barbero, P.; Oliveri, J.; Brun, P.L.; Fabro, M.; Galain, M.; Fernández, C.S.; et al. Genetic Analysis Algorithm for the Study of Patients with Multiple Congenital Anomalies and Isolated Congenital Heart Disease. Proceedings 2021, 76, 8. https://doi.org/10.3390/IECGE-07151
Delea M, Massara LS, Espeche LD, Bidondo MP, Barbero P, Oliveri J, Brun PL, Fabro M, Galain M, Fernández CS, et al. Genetic Analysis Algorithm for the Study of Patients with Multiple Congenital Anomalies and Isolated Congenital Heart Disease. Proceedings. 2021; 76(1):8. https://doi.org/10.3390/IECGE-07151
Chicago/Turabian StyleDelea, Marisol, Lucía S. Massara, Lucía D. Espeche, María P. Bidondo, Pablo Barbero, Jaen Oliveri, Paloma L. Brun, Mónica Fabro, Micaela Galain, Cecilia S. Fernández, and et al. 2021. "Genetic Analysis Algorithm for the Study of Patients with Multiple Congenital Anomalies and Isolated Congenital Heart Disease" Proceedings 76, no. 1: 8. https://doi.org/10.3390/IECGE-07151
APA StyleDelea, M., Massara, L. S., Espeche, L. D., Bidondo, M. P., Barbero, P., Oliveri, J., Brun, P. L., Fabro, M., Galain, M., Fernández, C. S., Taboas, M., Bruque, C. D., Kolomenski, E., Izquierdo, A., Berenstein, A. J., Cosentino, V., Martinoli, M. C., Vilas, M., Rittler, M., ... the PID ACM-CC Group. (2021). Genetic Analysis Algorithm for the Study of Patients with Multiple Congenital Anomalies and Isolated Congenital Heart Disease. Proceedings, 76(1), 8. https://doi.org/10.3390/IECGE-07151