Cytotoxic Effect of Cholesterol Metabolites on Human Colonic Tumor (Caco-2) and Non-Tumor (CCD-18Co) Cells and Their Potential Implication in Colorectal Carcinogenesis †
Abstract
:1. Introduction
2. Results
2.1. Coprostanol
2.2. Cholestanol
2.3. Coprostanone
2.4. Cholestenone
2.5. 5-Fluorouracil
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | Adenosine triphosphate-binding cassette |
CRC | Colorectal cancer |
5-FU | 5-Fluorouracil |
IC50 | Half maximal inhibitory concentration |
MTT | Methylthiazolyldiphenyl-tetrazolium bromide |
NF-κB | Nuclear factor-kappa B |
PBS | Phosphate-buffered saline |
References
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019, 14, 89. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.J.; Drasar, B.S.; Aries, V.; Crowther, J.S.; Hawksworth, G.; Williams, R.E.O. Bacteria and aetiology of cancer of large bowel. Lancet 1971, 297, 95–100. [Google Scholar] [CrossRef]
- Reddy, B.S.; Wynder, E.L. Metabolic epidemiology of colon cancer: Fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer 1977, 39, 2533–2539. [Google Scholar] [CrossRef]
- Butterworth, B.E.; Bogdanffy, M.S. A comprehensive approach for integration of toxicity and cancer risk assessments. Regul. Toxicol. Pharmacol. 1999, 29, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Tena, M.; Alegría, A.; Lagarda, M.J. Relationship between dietary sterols and gut microbiota: A review. Eur. J. Lipid Sci. Technol. 2018, 120, 1800054. [Google Scholar] [CrossRef]
- López-García, G.; Alegría, A.; Barberá, A.; Cilla, A. Antiproliferative Effects and Mechanism of Action of Phytosterols Derived from Bioactive Plant Extracts. In Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery, 1st ed.; Ullah, M.F., Ahmad, A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 145–165. [Google Scholar] [CrossRef]
- Suzuki, K.; Bruce, W.R.; Baptista, J.; Furrer, R.; Vaughan, D.J.; Krepinsky, J.J. Characterization of cytotoxic steroids in human faeces and their putative role in the etymology of human colonic cancer. Cancer Lett. 1986, 33, 307–316. [Google Scholar] [CrossRef]
- Kaul, H.K.; Couch, D.B.; Gingerich, J.D.; Bruce, W.R.; Heddle, J.A. Genotoxicity of two fecal steroids in murine colonic epithelium assessed by the sister chromatid exchange technique. Mutagenesis 1987, 2, 441–444. [Google Scholar] [CrossRef]
- Araki, Y.; Andoh, A.; Bamba, H.; Yoshikawa, K.; Komai, Y.; Higuchi, A.; Fujiyama, Y. The cytotoxicity of hydrophobic bile acids is ameliorated by more hydrophilic bile acids in intestinal cell lines IEC-6 and Caco-2. Oncol. Rep. 2003, 10, 1931–1936. [Google Scholar] [CrossRef]
- Kriaa, A.; Bourgin, M.; Mkaouar, H.; Jablaoui, A.; Akermi, N.; Soussou, S.; Maguin, E.; Rhimi, M. Microbial reduction of cholesterol to coprostanol: An old concept and new insights. Catalysts 2019, 9, 167. [Google Scholar] [CrossRef]
- Faried, A.; Faried, L.S.; Nakagawa, T.; Yamauchi, T.; Kitani, M.; Sasabe, H.; Nishimura, T.; Usman, N.; Kato, H.; Asao, T.; et al. Chemically synthesized sugar-cholestanols possess a preferential anticancer activity involving promising therapeutic potential against human esophageal cancer. Cancer Sci. 2007, 98, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Hahismoto, S.; Yazawa, S.; Asao, T.; Faried, A.; Nishimura, T.; Tsuboi, K.; Nakagawa, T.; Yamauchi, T.; Koyama, N.; Umehara, K.; et al. Novel sugar-cholestanols as anticancer agents against peritoneal dissemination of tumor cells. Glycoconj. J. 2008, 25, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Ajouz, H.; Mukherji, D.; Shamseddine, A. Secondary bile acids: An underrecognized cause of colon cancer. World J. Surg. Oncol. 2014, 12, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cermak, J.; Balla, J.; Jacob, H.S.; Balla, G.; Enright, H.; Nath, K.; Vercellotti, G.M. Tumor cell heme uptake induces ferritin synthesis resulting in altered oxidant sensitivity: Possible role in chemotherapy efficacy. Cancer Res. 1993, 53, 5308–5313. [Google Scholar] [PubMed]
- Lin, Y.; Bai, L.; Chen, W.; Xu, S. The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin. Ther. Targets 2010, 14, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Von Bergmann, K.; Sudhop, T.; Lütjohann, D. Cholesterol and plant sterol absorption: Recent insights. Am. J. Cardiol. 2005, 96, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.M.; Weber, C.; Crowley-Skillicorn, C.; Dvorak, K.; Bernstein, H.; Bernstein, C.; Holubec, H.; Dvorakova, B.; Garewal, H. Deoxycholate induces mitochondrial oxidative stress and activates NF-κB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis 2007, 28, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Sala, A.; Ávila-Gálvez, M.A.; Cilla, A.; Barberá, R.; Garcia-Llatas, G.; Espín, J.C.; González-Sarrías, A. Physiological concentrations of phytosterols enhance the apoptotic effects of 5-fluorouracil in colon cancer cells. J. Funct. Foods 2018, 49, 52–60. [Google Scholar] [CrossRef]
Cell Viability (% Control) | ||||||
---|---|---|---|---|---|---|
CCD-18Co | Caco-2 | |||||
[μM] | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h |
Coprostanol | ||||||
9.4 | 98 ± 6 abA | 90 ± 2 aA ǂ | 93 ± 3 aA | 106 ± 15 aA | 105± 4 aA | 108 ± 15 abA |
18.75 | 103 ± 4 bA | 97 ± 3 abA ǂ | 109 ± 9 aA | 109 ± 22 aA | 117 ± 4 *bA | 105 ± 8 abA |
37.5 | 109 ± 3 bA | 91 ± 5 aB ǂ | 101 ± 2 aAB | 93 ± 6 aA | 102 ± 2 aAB | 121 ± 15 bcB |
75 | 101 ± 7 abA | 106 ± 4 bA | 99± 19 aA | 108 ± 9 aA | 102 ± 7 aA | 111 ± 17 abA |
150 | 100 ± 8 abA ǂ | 89 ± 7 aAB ǂ | 84 ± 7 aB ǂ | 137 ± 8 aA | 132 ± 4 *cA | 142 ± 9 *cA |
300 | 89 ± 4 aA ǂ | 72 ± 6 *cB ǂ | 48 ± 5 *aC ǂ | 146 ± 54 aA | 103 ± 3 aB | 90 ± 10 aBC |
Cholestanol | ||||||
9.4 | 86 ± 13 aA | 79 ± 8 *aAǂ | 93 ± 22 aA | 86 ± 11 aA | 96 ± 1 aA | 94 ± 22 aA |
18.75 | 72 ± 7 *abA | 74 ± 5 *aAǂ | 84 ± 12 aA | 86 ± 10 aA | 102 ± 2 aA | 93 ± 16 aA |
37.5 | 70 ± 4 *abA | 73 ± 9 *aAǂ | 80 ± 10 aA | 80 ± 8 *aA | 90 ± 10 aA | 99 ± 27 aA |
75 | 67 ± 8 *abA | 75 ± 5 *aAǂ | 77 ± 4 aA | 76 ± 4 *aA | 92 ± 9 aA | 80 ± 9 aA |
150 | 61 ± 9 *bAǂ | 70 ± 5 *aAǂ | 75 ± 4 aA | 77 ± 3 *aA | 91 ± 2 aAB | 104 ± 17 aB |
300 | 59 ± 10 *bAǂ | 72 ± 5 *aAǂ | 98 ± 15 aB | 79 ± 1 *aA | 97± 2 aAB | 108 ± 24 aB |
Coprostanone | ||||||
9.4 | 94 ± 10 aA | 101 ± 11 aA | 80 ± 2 *aBǂ | 90 ± 18 aA | 106 ± 11 abA | 105 ± 16 aA |
18.75 | 107 ± 15 aA | 91 ± 5 aBǂ | 86 ± 15 aB | 115 ± 11 aA | 127 ± 6 *bA | 115 ± 4 aA |
37.5 | 87 ± 11 aA | 100 ± 4 aAǂ | 66 ± 9 *aBǂ | 108 ± 29 aA | 120 ± 13 bA | 112 ± 9 aA |
75 | 65 ± 2 *bAǂ | 99 ± 8 aBǂ | 47 ± 8 *bCǂ | 132 ± 16 aA | 123 ± 10 *bA | 102 ± 7 aA |
150 | 62 ± 6 *bcAǂ | 52 ± 13 *bAǂ | 25 ± 1 *cB | 106 ± 8 aA | 117 ± 6 bA | 46 ± 3 *bB |
300 | 44 ± 3 *cAǂ | 25 ± 3 *cBǂ | 19 ± 4 *cB | 103 ± 16 aA | 95 ± 9 aA | 15 ± 3 *cB |
Cholestenone | ||||||
9.4 | 86 ± 4 *aA | 90 ± 7 aA | 61 ± 31 *aB | 83 ± 3 *aA | 93 ± 5 aA | 83 ± 19 aA |
18.75 | 76 ± 5 *bA | 82 ± 5 *aA | 51 ± 25 *abBǂ | 70 ± 5 *bA | 77 ± 2 *bA | 81 ± 7 abA |
37.5 | 56 ± 4 *cAǂ | 81 ± 19 *aB | 61 ± 4 *aA | 70 ± 5 *bA | 68 ± 6 *bA | 61 ±10 *bA |
75 | 37 ± 3 *dAǂ | 21 ± 3 *bAǂ | 21 ± 2 *bA | 60 ± 7 *bA | 51 ± 5 *cA | 27 ± 3 *cB |
150 | 27 ± 2 *eAǂ | 19 ± 2 *bA | 24 ± 5 *abA | 37 ± 6 *cA | 17 ± 1 *dB | 10 ± 3 *cB |
300 | 29 ± 3 *deA | 19 ± 1 *bA | 31 ± 10 *abA | 29 ± 3 *cA | 12 ± 2 *dB | 9 ± 1 *cB |
5-Fluorouracil (25 μM) | 90 ± 3 *aAǂ | 65 ± 5 *bA | 64 ± 2 *bA | 64 ± 10 *aB | 70 ± 10*aA | 67 ± 7*aA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makran, M.; López-García, G.; Garcia-Llatas, G.; Barberá, R.; Alegría, A.; Cilla, A. Cytotoxic Effect of Cholesterol Metabolites on Human Colonic Tumor (Caco-2) and Non-Tumor (CCD-18Co) Cells and Their Potential Implication in Colorectal Carcinogenesis. Proceedings 2021, 70, 56. https://doi.org/10.3390/foods_2020-07613
Makran M, López-García G, Garcia-Llatas G, Barberá R, Alegría A, Cilla A. Cytotoxic Effect of Cholesterol Metabolites on Human Colonic Tumor (Caco-2) and Non-Tumor (CCD-18Co) Cells and Their Potential Implication in Colorectal Carcinogenesis. Proceedings. 2021; 70(1):56. https://doi.org/10.3390/foods_2020-07613
Chicago/Turabian StyleMakran, Mussa, Gabriel López-García, Guadalupe Garcia-Llatas, Reyes Barberá, Amparo Alegría, and Antonio Cilla. 2021. "Cytotoxic Effect of Cholesterol Metabolites on Human Colonic Tumor (Caco-2) and Non-Tumor (CCD-18Co) Cells and Their Potential Implication in Colorectal Carcinogenesis" Proceedings 70, no. 1: 56. https://doi.org/10.3390/foods_2020-07613
APA StyleMakran, M., López-García, G., Garcia-Llatas, G., Barberá, R., Alegría, A., & Cilla, A. (2021). Cytotoxic Effect of Cholesterol Metabolites on Human Colonic Tumor (Caco-2) and Non-Tumor (CCD-18Co) Cells and Their Potential Implication in Colorectal Carcinogenesis. Proceedings, 70(1), 56. https://doi.org/10.3390/foods_2020-07613