Temporal and Elevation Trend Detection of Rainfall Erosivity Density in Greece †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- It is suggested to compute ED for the assessment of erosivity in Greece instead of the direct computation of R, due to the large proportion of missing values in the pluviograph records.
- Stationarity of ED was found for the majority of the selected stations, in contrast to reported precipitation trends for the same time period.
- The hypothesis that ED values are not correlated to elevation could not be rejected.
Author Contributions
Funding
Conflicts of Interest
References
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Nearing, M.; Pruski, F.; O’neal, M. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- Hellenic Republic. Acceptance of the Greek National Action Plan against Desertification; Joint Ministerial Decision: Athens, Greece, 2001. [Google Scholar]
- Kosmas, C.; Danalatos, N.; Kosma, D.; Kosmopoulou, P. Greece. In Soil Erosion in Europe; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 279–288. ISBN 978-0-470-85920-9. [Google Scholar]
- USDA-ARS. Science Documentation, Revised Universal Soil Loss Equation Version 2 (RUSLE2); USDA-Agricultural Research Service: Washington, DC, USA, 2013. [Google Scholar]
- Feidas, H.; Noulopoulou, C.; Makrogiannis, T.; Bora-Senta, E. Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theor. Appl. Climatol. 2007, 87, 155–177. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K. Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena 2016, 137, 161–172. [Google Scholar] [CrossRef]
- Vantas, K. Determination of Rainfall Erosivity in the Framework of Data Science Using Machine Learning and Geostatistics Methods. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2017. [Google Scholar]
- Vantas, K.; Sidiropoulos, E. Imputation of erosivity values under incomplete rainfall data by machine learning methods. Eur. Water 2017, 57, 193–199. [Google Scholar]
- Vafiadis, M.; Tolikas, D.; Koutsoyiannis, D. HYDROSCOPE: The new Greek national database system for meteorological, hydrological and hydrogeological information. In WIT Transactions on Ecology and the Environment; WIT Press: Boston, MA, USA, 1994; Volume 1, pp. 1–8. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Department of Agriculture: Washington, DC, USA, 1997. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised Universal Soil Loss Equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Weiss, L.L. Ratio of true to fixed-interval maximum rainfall. J. Hydr. Divis. 1964, 90, 77–82. [Google Scholar] [CrossRef]
- Hershfield, D.M. Rainfall frequency atlas of the United States; U.S. Department of Commerce, Weather Bureau: Washington, D.C., USA, 1961.
- Van Montfort, M.A. Concomitants of the Hershfield factor. J. Hydrol. 1997, 194, 357–365. [Google Scholar] [CrossRef]
- Brown, L.; Foster, G. Storm erosivity using idealized intensity distributions. Trans. ASAE 1987, 30, 379–386. [Google Scholar] [CrossRef]
- McGregor, K.C.; Bingner, R.L.; Bowie, A.J.; Foster, G.R. Erosivity index values for northern Mississippi. Trans. ASAE 1995, 38, 1039–1047. [Google Scholar] [CrossRef]
- Hellenic Republic. Implementation of Directive 2007/60 EC–Development of Rainfall Curves in Greece; Special Water Secretariat: Athens, Greece, 2016. [Google Scholar]
- Ripley, B. Modern applied statistics with S. In Statistics and Computing, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kendall, M.G. Rank correlation methods; Griffin: Oxford, England, 1955. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Vantas, K. hydroscoper: R interface to the Greek National Data Bank for Hydrological and Meteorological Information. J. Open Source Softw. 2018, 3, 625. [Google Scholar] [CrossRef]
- Vantas, K. Hyetor: R Package to Analyze Fixed Interval Precipitation Time Series. 2018. Available online: https://github.com/kvantas/hyetor (accessed on 10 November 2018).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2009; ISBN 978-0-387-98140-6. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
ID | Name | WD | Lon (°) | Lat (°) | El (m) | MCV (%) | Tau | padj | |
---|---|---|---|---|---|---|---|---|---|
1 | 200003 | GRABIA | GR07 | 22.43 | 38.67 | 381 | 73.4 | 0.12 | 0.612 |
2 | 200011 | LIDORIKI | GR04 | 22.20 | 38.53 | 548 | 69.2 | −0.09 | 0.612 |
3 | 200015 | PYRA | GR04 | 22.27 | 38.74 | 1137 | 74.8 | −0.11 | 0.612 |
4 | 200018 | AG. TRIADA | GR07 | 22.92 | 38.35 | 400 | 65.4 | 0.31 | 0.081 |
5 | 200021 | DISTOMO | GR07 | 22.67 | 38.43 | 458 | 60.3 | −0.02 | 0.919 |
6 | 200024 | LEIBADIA | GR07 | 22.87 | 38.44 | 176 | 56 | −0.27 | 0.132 |
7 | 200059 | BASILIKO | GR05 | 20.59 | 40.01 | 747 | 75.8 | −0.11 | 0.612 |
8 | 200092 | ELASSONA | GR08 | 22.19 | 39.89 | 276 | 71.7 | 0.02 | 0.919 |
9 | 200135 | KALYBIA | GR02 | 22.30 | 37.92 | 822 | 65.3 | 0.29 | 0.123 |
10 | 200142 | NEMEA | GR02 | 22.66 | 37.83 | 306 | 63.8 | −0.26 | 0.132 |
11 | 200144 | SPATHOBOUNI | GR02 | 22.80 | 37.85 | 150 | 48.1 | −0.08 | 0.612 |
12 | 200181 | LESINIO | GR04 | 21.19 | 38.42 | 2 | 59.9 | 0.45 | 0.055 |
13 | 200190 | POROS REG. | GR04 | 21.75 | 38.51 | 182 | 67.8 | −0.11 | 0.612 |
14 | 200243 | NEOCHORIO | GR03 | 22.48 | 37.67 | 704 | 63.2 | 0.14 | 0.595 |
15 | 200291 | A. ARCHANES | GR13 | 25.16 | 35.24 | 392 | 51.6 | 0.09 | 0.612 |
16 | 200309 | DRAMA | GR11 | 24.15 | 41.14 | 100 | 69.6 | 0.10 | 0.612 |
17 | 200311 | PARANESTE | GR12 | 24.50 | 41.27 | 122 | 66.1 | −0.46 | 0.005* |
18 | 200346 | KATERINE | GR09 | 22.51 | 40.28 | 30 | 64.2 | −0.15 | 0.595 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vantas, K.; Sidiropoulos, E.; Loukas, A. Temporal and Elevation Trend Detection of Rainfall Erosivity Density in Greece. Proceedings 2019, 7, 10. https://doi.org/10.3390/ECWS-3-05814
Vantas K, Sidiropoulos E, Loukas A. Temporal and Elevation Trend Detection of Rainfall Erosivity Density in Greece. Proceedings. 2019; 7(1):10. https://doi.org/10.3390/ECWS-3-05814
Chicago/Turabian StyleVantas, Konstantinos, Epaminondas Sidiropoulos, and Athanasios Loukas. 2019. "Temporal and Elevation Trend Detection of Rainfall Erosivity Density in Greece" Proceedings 7, no. 1: 10. https://doi.org/10.3390/ECWS-3-05814