Recycling of Waste Rubber by Thermo-Mechanical Treatment in a Twin-Screw Extruder †
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Thermo-Mechanical Treatment of Ground Tire Rubber
2.3. Measurements
3. Results
4. Conclusions
- Examining a broader range of extrusion parameters could potentially result in higher hydroxyl values of modified ground tire rubber and enhance the interfacial interactions with the polyurethane matrix. Moreover, modified GTR could be applied as a cross-linking agent for rigid polyurethane materials when sufficiently high values would be achieved.
- Incorporation of additional modifiers, which could enhance the interfacial adhesion with the polyurethane matrix.
- Investigation of the volatile organic compound emissions during modification, especially when additional modifiers are applied, which is essential for developing truly environmentally friendly processes.
- Reduction of the environmental impacts of the process, e.g., by lowering the process temperature or other adjustments of process parameters aimed at reducing the energy demand.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Laboy-Nieves, E.N. Energy Recovery from Scrap Tires: A Sustainable Option for Small Islands like Puerto Rico. Sustainability 2014, 6, 3105–3121. [Google Scholar] [CrossRef]
- Godlewska, J. Recovery and Recycling of Waste Tires in Poland. Procedia Eng. 2017, 182, 229–234. [Google Scholar] [CrossRef]
- Zedler, Ł.; Przybysz-Romatowska, M.; Haponiuk, J.; Wang, S.; Formela, K. Modification of Ground Tire Rubber—Promising Approach for Development of Green Composites. J. Compos. Sci. 2020, 4, 2. [Google Scholar] [CrossRef]
- Ramarad, S.; Khalid, M.; Ratnam, C.T.; Luqman Chuah, A.; Rashmi, W. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog. Mater. Sci. 2015, 72, 100–140. [Google Scholar] [CrossRef]
- Korol, J.; Hejna, A.; Burchart-Korol, D.; Wachowicz, J. Comparative Analysis of Carbon, Ecological, and Water Footprints of Polypropylene-Based Composites Filled with Cotton, Jute and Kenaf Fibers. Materials 2020, 13, 3541. [Google Scholar] [CrossRef] [PubMed]
- Hernández, E.H.; Gámez, J.F.H.; Cepeda, L.F.; Muñoz, E.J.C.; Corral, F.S.; Rosales, S.G.S.; Velázquez, G.N.; Morones, P.G.; Martínez, D.I.S. Sulfuric acid treatment of ground tire rubber and its effect on the mechanical and thermal properties of polypropylene composites. J. Appl. Polym. Sci. 2017, 134, 44864. [Google Scholar] [CrossRef]
- Li, Y.; Shen, A.; Lyu, Z.; Wang, S.; Formela, K.; Zhang, G. Ground tire rubber thermo-mechanically devulcanized in the presence of waste engine oil as asphalt modifier. Constr. Build. Mater. 2019, 222, 588–600. [Google Scholar] [CrossRef]
- Aoudia, K.; Azem, S.; Aït Hocine, N.; Gratton, M.; Pettarin, V.; Seghar, S. Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin. Waste Manag. 2017, 60, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Long, D.; Huang, S.; Li, Z.; Guo, X. Time effectiveness of the low-temperature plasma surface modification of ground tire rubber powder. J. Adhes. Sci. Technol. 2015, 29, 1330–1340. [Google Scholar] [CrossRef]
- Colom, X.; Faliq, A.; Formela, K.; Canavate, J. FTIR spectroscopic and thermogravimetric characterization of ground tyre rubber devulcanized by microwave treatment. Polym. Test. 2016, 52, 200–208. [Google Scholar] [CrossRef]
- Formela, K.; Klein, M.; Colom, X.; Saeb, M.R. Investigating the combined impact of plasticizer and shear force on the efficiency of low temperature reclaiming of ground tire rubber (GTR). Polym. Degrad. Stabil. 2016, 125, 1–11. [Google Scholar] [CrossRef]
- Kelly, A.L.; Brown, E.C.; Coates, P.D. The effect of screw geometry on melt temperature profile in single screw extrusion. Polym. Eng. Sci. 2006, 46, 1706–1714. [Google Scholar] [CrossRef]
- Piszczyk, Ł.; Hejna, A.; Danowska, M.; Strankowski, M.; Formela, K. Polyurethane/ground tire rubber composite foams based on polyglycerol: Processing, mechanical and thermal properties. J. Reinf. Plast. Compos. 2015, 34, 708–717. [Google Scholar] [CrossRef]
- Formela, K.; Hejna, A.; Zedler, Ł.; Przybysz, M.; Ryl, J.; Saeb, M.R.; Piszczyk, Ł. Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber. Ind. Crops Prod. 2017, 108, 844–852. [Google Scholar] [CrossRef]
- Hartman, L.; Lago, R.C.A.; Azeredo, L.C.; Azeredo, M.A.A. Determination of hydroxyl value in fats and oils using an acid catalyst. Analyst 1987, 112, 145. [Google Scholar] [CrossRef]
- Skrökki, A. Quality of Frying Oils in Grill Restaurants and Catering Establishments. Lipid/Fett 1995, 97, 299–301. [Google Scholar] [CrossRef]
Sample | Oil Content, phr | Screw Speed, rpm | Motor Load, % | SME, kWh/kg | TEC, kWh/kg | %NCO, % | ΔNCO, % | LOH mg KOH/g |
---|---|---|---|---|---|---|---|---|
Neat GTR | - | - | - | - | - | 33.3 | 9.4 | 61.7 |
GTR | - | 50 | 33.0 | 0.053 | 0.160 | 36.3 | 6.4 | 41.1 |
350 | 2.2 | 0.006 | 0.170 | 32.1 | 10.6 | 67.8 | ||
Rapeseed oil | 20 | 50 | 21.3 | 0.033 | 0.157 | 37.9 | 4.8 | 30.8 |
350 | 3.5 | 0.006 | 0.173 | 33.8 | 8.9 | 56.9 | ||
40 | 150 | 4.6 | 0.008 | 0.165 | 36.7 | 6.0 | 38.3 | |
350 | 3.6 | 0.006 | 0.175 | 34.5 | 8.2 | 53.1 | ||
Waste oil | 20 | 50 | 16.4 | 0.026 | 0.157 | 32.4 | 10.3 | 66.6 |
350 | 3.6 | 0.006 | 0.173 | 30.9 | 11.8 | 75.2 | ||
40 | 150 | 4.7 | 0.008 | 0.168 | 29.9 | 12.8 | 82.3 | |
350 | 3.6 | 0.006 | 0.178 | 30.9 | 11.8 | 75.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zedler, Ł.; Kosmela, P.; Olszewski, A.; Burger, P.; Formela, K.; Hejna, A. Recycling of Waste Rubber by Thermo-Mechanical Treatment in a Twin-Screw Extruder. Proceedings 2021, 69, 10. https://doi.org/10.3390/CGPM2020-07195
Zedler Ł, Kosmela P, Olszewski A, Burger P, Formela K, Hejna A. Recycling of Waste Rubber by Thermo-Mechanical Treatment in a Twin-Screw Extruder. Proceedings. 2021; 69(1):10. https://doi.org/10.3390/CGPM2020-07195
Chicago/Turabian StyleZedler, Łukasz, Paulina Kosmela, Adam Olszewski, Paulina Burger, Krzyszfot Formela, and Aleksander Hejna. 2021. "Recycling of Waste Rubber by Thermo-Mechanical Treatment in a Twin-Screw Extruder" Proceedings 69, no. 1: 10. https://doi.org/10.3390/CGPM2020-07195
APA StyleZedler, Ł., Kosmela, P., Olszewski, A., Burger, P., Formela, K., & Hejna, A. (2021). Recycling of Waste Rubber by Thermo-Mechanical Treatment in a Twin-Screw Extruder. Proceedings, 69(1), 10. https://doi.org/10.3390/CGPM2020-07195