Comparison of Nanosized Markers in Lateral Flow Immunoassay of Antibiotic Lincomycin †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactants
2.2. Preparation of Monoclonal Anti-LIN Antibodies
2.3. Synthesis and Characterization of AuNPs
2.4. Conjugation of Antibodies to AuNPs
2.5. Conjugation of Antibodies with QDs
2.6. Preparation of Test Strips
2.7. LFIA Procedures
3. Results
3.1. Synthesis and Characterization of AuNPs
3.2. AuNP-Based LFIA
3.3. QD-Based LFIA
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosensors Bioelectron. 2015, 73, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Urusov, A.E.; Zherdev, A.V.; Dzantiev, B.B. Towards Lateral flow quantitative assays: Detection approaches. Biosensors 2019, 9, 89. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, K.; Alfranca, G.; de la Fuente, J.M.; Cui, D. A plasmonic thermal sensing based portable device for lateral flow assay detection and quantification. Nanoscale Res. Lett. 2020, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Berlina, A.N.; Taranova, N.A.; Zherdev, A.V.; Vengerov, Y.Y.; Dzantiev, B.B. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Anal. Bioanal. Chem. 2013, 405, 4997–5000. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Upadhyay, N.; Nara, S. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Crit. Rev. Food Sci. Nutr. 2018, 58, 1715–1734. [Google Scholar] [CrossRef] [PubMed]
- Zangheri, M.; Di Nardo, F.; Anfossi, L.; Giovannoli, C.; Baggiani, C.; Roda, A.; Mirasoli, M. Multiplex chemiluminescent biosensor for type B-fumonisins and aflatoxin B1 quantitative detection in maize flour. Analyst 2014, 140, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Morales-Narváez, E.; Naghdi, T.; Zor, E.; Merkoçi, A. Photoluminescent lateral-flow immunoassay revealed by graphene oxide: Highly sensitive paper-based pathogen detection. Anal. Chem. 2015, 87, 8573–8577. [Google Scholar] [CrossRef] [PubMed]
- Han, G.R.; Kim, M.G. Highly Sensitive chemiluminescence-based lateral flow immunoassay for cardiac troponin i detection in human serum. Sensors 2020, 20, 2593. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Dou, L.; Bu, T. Highly sensitive furazolidone monitoring in milk by a signal amplified lateral flow assay based on magnetite nanoparticles labeled dual-probe. Food Chem. 2018, 261, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Noguera, P.; Posthuma-Trumpie, G.A.; van Tuil, M.; van der Wal, F.J.; de Boer, A.; Moers, A.P.H.A.; Amerongen, A. Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli. Anal. Bioanal. Chem. 2011, 399, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Wiriyachaiporn, N.; Sirikett, H.; Maneeprakorn, W.; Dharakul, T. Carbon nanotag based visual detection of influenza A virus by a lateral flow immunoassay. Microchim. Acta 2017, 184, 1827–1835. [Google Scholar] [CrossRef]
- Cao, S.; Song, S.; Liu, L.; Kong, N.; Kuang, H.; Xu, C. Comparison of an enzyme-linked immunosorbent assay with an immunochromatographic assay for detection of lincomycin in milk and honey. Immunol. Investig. 2015, 44, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Hendrickson, O.D.; Zvereva, E.A.; Shanin, I.A.; Zherdev, A.V.; Tarannum, N.; Dzantiev, B.B. Highly sensitive immunochromatographic detection of antibiotic ciprofloxacin in milk. Appl. Biochem. Microbiol. 2018, 54, 670–676. [Google Scholar] [CrossRef]
- Alasel, M.; Keusgen, M. Two protein modified gold nanoparticles for one step serological diagnosis. Phys. Status Solidi A 2018, 215, 1700700. [Google Scholar] [CrossRef]
- O’Farrell, B. Evolution in lateral flow–based immunoassay systems. Chapter 1. In Lateral Flow Immunoassay; Wong, R.C., Tse, H.Y., Eds.; Humana Press: New York, NY, USA, 2009; p. 236. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendrickson, O.D.; Serebrennikova, K.V.; Zvereva, E.A.; Popravko, D.S.; Zherdev, A.V.; Xu, C.; Dzantiev, B.B. Comparison of Nanosized Markers in Lateral Flow Immunoassay of Antibiotic Lincomycin. Proceedings 2020, 60, 41. https://doi.org/10.3390/IECB2020-07030
Hendrickson OD, Serebrennikova KV, Zvereva EA, Popravko DS, Zherdev AV, Xu C, Dzantiev BB. Comparison of Nanosized Markers in Lateral Flow Immunoassay of Antibiotic Lincomycin. Proceedings. 2020; 60(1):41. https://doi.org/10.3390/IECB2020-07030
Chicago/Turabian StyleHendrickson, Olga D., Kseniya V. Serebrennikova, Elena A. Zvereva, Demid S. Popravko, Anatoly V. Zherdev, Chuanlai Xu, and Boris B. Dzantiev. 2020. "Comparison of Nanosized Markers in Lateral Flow Immunoassay of Antibiotic Lincomycin" Proceedings 60, no. 1: 41. https://doi.org/10.3390/IECB2020-07030
APA StyleHendrickson, O. D., Serebrennikova, K. V., Zvereva, E. A., Popravko, D. S., Zherdev, A. V., Xu, C., & Dzantiev, B. B. (2020). Comparison of Nanosized Markers in Lateral Flow Immunoassay of Antibiotic Lincomycin. Proceedings, 60(1), 41. https://doi.org/10.3390/IECB2020-07030