Effect of the Incorporation of Biomass in the Carbonization of Waste Electrical and Electronic Equipment †
Abstract
:1. Introduction
2. Literature Review
3. Experimental
4. Results and Discussions
5. Conclusions
Acknowledgments
References
- Kiddee, P.; Naidu, R.; Wong, M.H. Electronic waste management approaches: An overview. Waste Manag. 2013, 33, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor 2017; United Nations University: Macao, China, 2017. [Google Scholar]
- Balde, C.P.; Wang, F.; Kuehr, R.; Huisman, J. The Global E-Waste Monitor 2014; United Nations University: Macao, China, 2015. [Google Scholar]
- Diretiva 2012/19/UE do Parlamento Europeu e do Conselho. DIRETIVA 2012/19/UE DO PARLAMENTO EUROPEU E DO CONSELHO de 4 de julho de 2012. relativa aos resíduos de equipamentos elétricos e eletrónicos (REEE). J. Of. União Eur. 2012, 6, 38–71. [Google Scholar]
- Gurgul, A.; Szczepaniak, W.; Zabłocka-Malicka, M. Incineration and pyrolysis vs. steam gasification of electronic waste. Psychol. Bull. 2018, 624, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Luda, M.P. Pyrolysis of WEEE plastics. In Waste Electrical and Electronic Equipment (WEEE) Handbook; Woodhead Publishing: Cambridge, UK, 2012; pp. 239–263. [Google Scholar]
- Üner, O.; Bayrak, Y. The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax. Microporous Mesoporous Mater. 2018, 268, 225–234. [Google Scholar] [CrossRef]
- Umeda, K.; Nakamura, S.; Lu, D.; Yoshikawa, K. Biomass and Bioenergy Biomass gasification employing low-temperature carbonization pretreatment for tar reduction. Biomass Bioenergy 2019, 126, 142–149. [Google Scholar] [CrossRef]
- Kasper, A.C.; Berselli, G.B.T.; Freitas, B.D.; Tenório, J.A.S.; Bernardes, A.M.; Veit, H.M. Printed wiring boards for mobile phones: Characterization and recycling of copper. Waste Manag. 2011, 31, 2536–2545. [Google Scholar] [CrossRef] [PubMed]
100% WEEE | 75% WEEE | 50% WEEE | 25% WEEE | 0% WEEE | ||
---|---|---|---|---|---|---|
Proximate (%) | Moisture | 0.71 | 2.45 | 2.12 | 2.94 | 6.17 |
Volatiles | 62.71 | 62.38 | 61.84 | 58.7 | 57.25 | |
Fixed Carbon | 8.24 | 11.84 | 18.08 | 24.67 | 30.32 | |
Ashes | 28.33 | 23.34 | 17.96 | 13.73 | 6.26 | |
Ultimate (%) | Nitrogen | 0.76 | 1.14 | 1.37 | 1.27 | 1.99 |
Carbon | 41.85 | 36.95 | 39.5 | 30.38 | 29.41 | |
Hydrogen | 7.47 | 6.23 | 6.67 | 4.89 | 4.67 | |
Sulphur | 0.23 | 0.27 | 0.2 | 0.13 | 0.22 | |
Oxygen | 21.36 | 32.07 | 34.29 | 49.6 | 57.45 | |
Chlorine (%) | 26.83 | 22.95 | 22.71 | 16.79 | 4 | |
Higher Heating Value (MJ/kg) | 22.7 | 21.22 | 21.18 | 19.3 | 17.59 |
100% WEEE | 75% WEEE | 50% WEEE | 25% WEEE | 0% WEEE | ||
---|---|---|---|---|---|---|
Proximate (%) | Moisture | 1.21 | 3.7 | 1.02 | 0.34 | 0 |
Volatiles | 47.55 | 47.45 | 54.47 | 52.09 | 50.01 | |
Fixed Carbon | 17.27 | 13.88 | 16.53 | 16.67 | 21.05 | |
Ashes | 33.97 | 34.97 | 27.98 | 30.90 | 28.94 | |
Ultimate (%) | Nitrogen | 0.82 | 0.89 | 1.21 | 1.8 | 1.91 |
Carbon | 44.59 | 37.06 | 40.01 | 61.07 | 54.84 | |
Hydrogen | 7.61 | 5.32 | 6.56 | 7.4 | 6.28 | |
Sulphur | 0.57 | 0.48 | 0.37 | 0.28 | 0.15 | |
Oxygen | 46.41 | 56.78 | 43.85 | 29.45 | 36.82 | |
Chlorine (%) | 24.09 | 21.98 | 17.4 | 8.34 | 1.34 | |
HHV (MJ/kg) | 21.74 | 21.18 | 22.42 | 19.88 | 20.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota-Panizio, R.; Carmo-Calado, L.F.; Alves, O.; Nobre, C.; Silveira, J.L.; Brito, P.S.D.d.; Gonçalves, M. Effect of the Incorporation of Biomass in the Carbonization of Waste Electrical and Electronic Equipment. Proceedings 2020, 52, 4. https://doi.org/10.3390/proceedings2020052004
Mota-Panizio R, Carmo-Calado LF, Alves O, Nobre C, Silveira JL, Brito PSDd, Gonçalves M. Effect of the Incorporation of Biomass in the Carbonization of Waste Electrical and Electronic Equipment. Proceedings. 2020; 52(1):4. https://doi.org/10.3390/proceedings2020052004
Chicago/Turabian StyleMota-Panizio, Roberta, Luis F. Carmo-Calado, Octávio Alves, Catarina Nobre, J. L. Silveira, Paulo Sérgio Duque de Brito, and Margarida Gonçalves. 2020. "Effect of the Incorporation of Biomass in the Carbonization of Waste Electrical and Electronic Equipment" Proceedings 52, no. 1: 4. https://doi.org/10.3390/proceedings2020052004
APA StyleMota-Panizio, R., Carmo-Calado, L. F., Alves, O., Nobre, C., Silveira, J. L., Brito, P. S. D. d., & Gonçalves, M. (2020). Effect of the Incorporation of Biomass in the Carbonization of Waste Electrical and Electronic Equipment. Proceedings, 52(1), 4. https://doi.org/10.3390/proceedings2020052004