Exploring the Effects of Nanoparticle Incorporation on the Mechanical Properties of Hydrogels †
Abstract
:1. Introduction
2. Results
2.1. Influence of Crosslinker Concentration on Hydrogel Elastic Modulus
2.2. Influence of Nanoparticles on the Elastic Modulus of Chemically Crosslinked Hydrogels
2.3. Influence of Chemical Crosslinking on Nanoparticle-Mediated Enhancements of Hydrogel Elastic Modulus
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Polymerization Reaction
4.3. Measurment of Hydrogel Elastic Modulus
Acknowledgments
Conflicts of Interest
References
- Liaw, C.Y.; Ji, S.; Guvendiren, M. Engineering 3D hydrogels for personalized in vitro human tissue models. Adv. Healthc. Mater. 2018, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Huang, Y.; Torres-Lugo, M.; Ward, J.H.; Zhang, J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2000, 2, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Garg, T.; Goyal, A.K. Biomaterial-based scaffolds—Current status and future directions. Expert. Opin. Drug Deliv. 2014, 11, 767–789. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.; Gutowska, A. Lessons from nature: Stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002, 20, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental trends in polymer nanocomposites—A review. Mater. Sci. Eng. A 2005, 393, 1–11. [Google Scholar] [CrossRef]
- Tjong, S.C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 2006, 53, 73–197. [Google Scholar] [CrossRef]
- Münstedt, H.; Triebel, C. Elastic properties of polymer melts filled with nanoparticles. AIP Conf. Proc. 2011, 1375, 201–207. [Google Scholar] [CrossRef]
- Georgopanos, P.; Schneider, G.A.; Dreyer, A.; Handge, U.A.; Filiz, V.; Feld, A.; Yilmaz, E.D.; Krekeler, T.; Ritter, M.; Weller, H.; et al. Exceptionally strong, stiff and hard hybrid material based on an elastomer and isotropically shaped ceramic nanoparticles. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mangal, R.; Srivastava, S.; Archer, L.A. Phase stability and dynamics of entangled polymer-nanoparticle composites. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.H.; Yu, A.B.; Lu, G.Q. Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 2008, 33, 191–269. [Google Scholar] [CrossRef]
- Sen, S.; Thomin, J.D.; Kumar, S.K.; Keblinski, P. Molecular underpinnings of the mechanical reinforcement in polymer nanocomposites. Macromolecules 2007, 40, 4059–4067. [Google Scholar] [CrossRef]
- Lu, X.; Mi, Y. Characterization of the interfacial interaction between polyacrylamide and silicon substrate by fourier transform infrared spectroscopy. Macromolecules 2005, 38, 839–843. [Google Scholar] [CrossRef]
- Wu, L.; Zeng, L.; Chen, H.; Zhang, C. Effects of silica sol content on the properties of poly(acrylamide)/silica composite hydrogel. Polym. Bull. 2012, 68, 309–316. [Google Scholar] [CrossRef]
- Zaragoza, J.; Babhadiashar, N.; O’Brien, V.; Chang, A.; Blanco, M.; Zabalegui, A.; Lee, H.; Asuri, P. Experimental investigation of mechanical and thermal properties of silica nanoparticle-reinforced poly(acrylamide) nanocomposite hydrogels. PLoS ONE 2015, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Calvet, D.; Wong, J.Y.; Giasson, S. Rheological monitoring of polyacrylamide gelation: Importance of cross-link density and temperature. Macromolecules 2004, 37, 7762–7771. [Google Scholar] [CrossRef]
- Adibnia, V.; Taghavi, S.M.; Hill, R.J. Roles of chemical and physical crosslinking on the rheological properties of silica-doped polyacrylamide hydrogels. Rheol. Acta 2017, 56, 123–134. [Google Scholar] [CrossRef]
- Wu, C.J.; Gaharwar, A.K.; Chan, B.K.; Schmidt, G. Mechanically tough Pluronic F127/Laponite nanocomposite hydrogels from covalently and physically cross-linked networks. Macromolecules 2011, 44, 8215–8224. [Google Scholar] [CrossRef]
- Gaharwar, A.K.; Peppas, N.A.; Khademhosseini, A. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 2014, 111, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Zaragoza, J.; Chang, A.; Asuri, P. Effect of crosslinker length on the elastic and compression modulus of poly(acrylamide) nanocomposite hydrogels. J. Phys. Conf. Ser. 2017, 790, 1–6. [Google Scholar] [CrossRef]
%Bis | Elastic Modulus, G’ a | ||
---|---|---|---|
10% AAm | 5% AAm | 2.5% AAm | |
1 | 1.96 × 104 | 3.72 × 103 | 4.22 × 102 |
0.5 | 1.98 × 104 | 3.57 × 103 | 4.07 × 102 |
0.25 | 1.03 × 104 | 3.67 × 103 | 4.27 × 102 |
0.125 | 5.78 × 103 | 1.95 × 103 | 4.14 × 102 |
0.0625 | 2.67 × 103 | 5.98 × 102 | 4.78 × 101 |
%CBis | Elastic modulus, G’ a | ||
---|---|---|---|
10% AAm | 5% AAm | 2.5% AAm | |
9.09 | 1.96 × 104 | 3.57 × 103 | 4.27 × 102 |
4.76 | 1.98 × 104 | 3.67 × 103 | 4.14 × 102 |
2.44 | 1.03 × 104 | 1.95 × 103 | 4.78 × 101 |
1.23 | 5.78 × 103 | 5.98 × 102 | N/A b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaragoza, J.; Asuri, P. Exploring the Effects of Nanoparticle Incorporation on the Mechanical Properties of Hydrogels. Proceedings 2019, 3, 2. https://doi.org/10.3390/IOCN_2018-1-05191
Zaragoza J, Asuri P. Exploring the Effects of Nanoparticle Incorporation on the Mechanical Properties of Hydrogels. Proceedings. 2019; 3(1):2. https://doi.org/10.3390/IOCN_2018-1-05191
Chicago/Turabian StyleZaragoza, Josergio, and Prashanth Asuri. 2019. "Exploring the Effects of Nanoparticle Incorporation on the Mechanical Properties of Hydrogels" Proceedings 3, no. 1: 2. https://doi.org/10.3390/IOCN_2018-1-05191