Anomaly Detection in IoT: Methods, Techniques and Tools †
Abstract
:1. Introduction
2. Network Distribution and Dataset Generation
3. Dataset Analysis
4. Identification of Machine Learning Algorithms and Optimization of Early Detection
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agrawal, S.; Agrawal, J. Survey on Anomaly Detection using Data Mining Techniques. Procedia Comput. Sci. 2015, 60, 708–713. [Google Scholar] [CrossRef]
- Forecasting: Principles and Practice. Available online: http://OTexts.com/fpp2 (accessed on 10 July 2019).
- An Open Source MQTT Broker. Available online: https://mosquitto.org/ (accessed on 10 July 2019).
- Scapy. Available online: https://libraries.io/pypi/scapy/2.3.3 (accessed on 10 July 2019).
- Tshark: Terminal-based Wireshark. Available online: https://www.wireshark.org/docs/man-pages/tshark.html (accessed on 10 July 2019).
- Fernandez, D.; Vigoya, L.; Cacheda, F.; Novoa, F.J.; Lopez-Vizcaino, M.F.; Carneiro, V. A Practical Application of a Dataset Analysis in an Intrusion Detection System. In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 1–3 November 2018. [Google Scholar]
- An Introduction to Statistical Learning. Available online: https://doi.org/10.1007/978-1-4614-7138-7 (accessed on 10 July 2019).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, L.V.V.; López-Vizcaíno, M.; Iglesias, D.F.; Díaz, V.M.C. Anomaly Detection in IoT: Methods, Techniques and Tools. Proceedings 2019, 21, 4. https://doi.org/10.3390/proceedings2019021004
Morales LVV, López-Vizcaíno M, Iglesias DF, Díaz VMC. Anomaly Detection in IoT: Methods, Techniques and Tools. Proceedings. 2019; 21(1):4. https://doi.org/10.3390/proceedings2019021004
Chicago/Turabian StyleMorales, Laura Victoria Vigoya, Manuel López-Vizcaíno, Diego Fernández Iglesias, and Víctor Manuel Carneiro Díaz. 2019. "Anomaly Detection in IoT: Methods, Techniques and Tools" Proceedings 21, no. 1: 4. https://doi.org/10.3390/proceedings2019021004
APA StyleMorales, L. V. V., López-Vizcaíno, M., Iglesias, D. F., & Díaz, V. M. C. (2019). Anomaly Detection in IoT: Methods, Techniques and Tools. Proceedings, 21(1), 4. https://doi.org/10.3390/proceedings2019021004