Nonparametric Regression Estimation for Circular Data †
Abstract
:1. Introduction
2. The Model
3. Kernel-Type Estimators
4. Simulation Study
- R1.
- R2.
5. Conclusions
Funding
Conflicts of Interest
References
- Fisher, N.I. Statistical Analysis of Circular Data; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Mardia, K.V.; Jupp, P.E. Directional Statistics; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Di Marzio, M.; Panzera, A.; Taylor, C.C. Non-parametric Regression for Circular Responses. Scand. J. Stat. 2013, 40, 142–149. [Google Scholar] [CrossRef]
Model R1 | Model R2 | ||||||
---|---|---|---|---|---|---|---|
Estimator | n | 5 | 10 | 15 | 5 | 10 | 15 |
Nadaraya−Watson | 64 | 0.0226 | 0.0121 | 0.0089 | 0.0367 | 0.0213 | 0.0165 |
100 | 0.0171 | 0.0108 | 0.0080 | 0.0388 | 0.0024 | 0.0152 | |
225 | 0.0058 | 0.0049 | 0.0038 | 0.0185 | 0.0125 | 0.0108 | |
400 | 0.0056 | 0.0035 | 0.0026 | 0.0129 | 0.0080 | 0.0062 | |
64 | 0.0234 | 0.0125 | 0.0089 | 0.0283 | 0.0144 | 0.0107 | |
100 | 0.0165 | 0.0086 | 0.0061 | 0.0209 | 0.0013 | 0.0083 | |
225 | 0.0050 | 0.0039 | 0.0029 | 0.0103 | 0.0061 | 0.0047 | |
400 | 0.0050 | 0.0026 | 0.0018 | 0.0074 | 0.0043 | 0.0033 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meilán-Vila, A.; Francisco-Fernández, M.; Crujeiras, R.M.; Panzera, A. Nonparametric Regression Estimation for Circular Data. Proceedings 2019, 21, 27. https://doi.org/10.3390/proceedings2019021027
Meilán-Vila A, Francisco-Fernández M, Crujeiras RM, Panzera A. Nonparametric Regression Estimation for Circular Data. Proceedings. 2019; 21(1):27. https://doi.org/10.3390/proceedings2019021027
Chicago/Turabian StyleMeilán-Vila, Andrea, Mario Francisco-Fernández, Rosa M. Crujeiras, and Agnese Panzera. 2019. "Nonparametric Regression Estimation for Circular Data" Proceedings 21, no. 1: 27. https://doi.org/10.3390/proceedings2019021027