Priors for Diversity and Novelty on Neural Recommender Systems †
Abstract
:1. Introduction
2. Materials and Methods
2.1. PRIN and Prior Probabilities of Items
2.2. Evaluation Protocol
3. Results
4. Discussion
Funding
References
- McNee, S.M.; Riedl, J.; Konstan, J.A. Being Accurate is Not Enough: How Accuracy Metrics have hurt Recommender Systems. In Proceedings of the CHI EA ’06, CHI ’06 Extended Abstracts on Human Factors in Computing Systems, Montréal, QC, Canada, 22–27 April 2006; ACM Press: New York, New York, USA, 2006; pp. 1097–1101. [Google Scholar] [CrossRef]
- Fleder, D.; Hosanagar, K. Blockbuster Culture’s Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity. Manag. Sci. 2009, 55, 697–712. [Google Scholar] [CrossRef]
- Valcarce, D.; Parapar, J.; Álvaro Barreiro. Item-based relevance modelling of recommendations for getting rid of long tail products. Knowl.-Based Syst. 2016, 103, 41–51. [Google Scholar] [CrossRef]
- Ge, M.; Delgado-Battenfeld, C.; Jannach, D. Beyond Accuracy: Evaluating Recommender Systems by Coverage and Serendipity. In Proceedings of the RecSys ’10, Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 257–260. [Google Scholar] [CrossRef]
- Landin, A.; Suárez-García, E.; Valcarce, D. When Diversity Met Accuracy: A Story of Recommender Systems. Proceedings 2018, 2, 1178. [Google Scholar] [CrossRef]
- Landin, A.; Valcarce, D.; Parapar, J.; Álvaro Barreiro. PRIN: A Probabilistic Recommender with Item Priors and Neural Models. In Proceedings of the 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, 14–18 April 2019; Part I; pp. 133–147. [CrossRef]
- Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; Technical Report; Stanford InfoLab: Stanford, CA, USA, 1999. [Google Scholar]
- Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
- Kleinberg, J.M. Authoritative Sources in a Hyperlinked Environment. J. ACM 1999, 46, 604–632. [Google Scholar] [CrossRef]
- Bavelas, A.; Barrett, D. An Experimental Approach to Organizational Communication; American Management Association: New York, NY, USA, 1951. [Google Scholar]
- Wang, Y.; Wang, L.; Li, Y.; He, D.; Chen, W.; Liu, T.Y. A Theoretical Analysis of NDCG Ranking Measures. In Proceedings of the 26th Annual Conference on Learning Theory (COLT ’13), Princeton, NJ, USA, 12–14 June 2013; pp. 1–30. [Google Scholar]
- Zhou, T.; Kuscsik, Z.; Liu, J.G.; Medo, M.; Wakeling, J.R.; Zhang, Y.C. Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Natl. Acad. Sci. USA 2010, 107, 4511–4515. [Google Scholar] [CrossRef] [PubMed]
- Valcarce, D.; Bellogín, A.; Parapar, J.; Castells, P. On the robustness and discriminative power of information retrieval metrics for top-N recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18); Vancouver, BC, Canada, 2–7 October 2018; ACM: New York, NY, USA, 2018; pp. 260–268. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landin, A.; Valcarce, D.; Parapar, J.; Barreiro, Á. Priors for Diversity and Novelty on Neural Recommender Systems. Proceedings 2019, 21, 20. https://doi.org/10.3390/proceedings2019021020
Landin A, Valcarce D, Parapar J, Barreiro Á. Priors for Diversity and Novelty on Neural Recommender Systems. Proceedings. 2019; 21(1):20. https://doi.org/10.3390/proceedings2019021020
Chicago/Turabian StyleLandin, Alfonso, Daniel Valcarce, Javier Parapar, and Álvaro Barreiro. 2019. "Priors for Diversity and Novelty on Neural Recommender Systems" Proceedings 21, no. 1: 20. https://doi.org/10.3390/proceedings2019021020
APA StyleLandin, A., Valcarce, D., Parapar, J., & Barreiro, Á. (2019). Priors for Diversity and Novelty on Neural Recommender Systems. Proceedings, 21(1), 20. https://doi.org/10.3390/proceedings2019021020