Interpolating Binary and Multivalued Logical Quantum Gates †
Abstract
:1. Introduction
2. Eigenlogic Interpretation
2.1. Historical Background
2.2. Binary Eigenlogic
- eigenvectors in Hilbert space ⟺ interpretations (atomic propositional cases)
- logical observables ⟺ logical connectives
- eigenvalues ⟺ truth values
2.3. Fuzzy Eigenlogic
2.4. Multivalued Eigenlogic
3. The Interpolation Method for Quantum Operators
3.1. Lagrange and Cayley-Hamilton Interpolation
3.2. Scaling to higher arity for more logical arguments
4. Building the Controlled-Not and Toffoli Binary Gates
4.1. One Qubit Gates
4.2. Building Cz and CNOT gates
- (i)
- The Kronecker product of two projection operators is also a projection operator.
- (ii)
- If projection operators are rank-1 (a single eigenvalue is 1 all the others are 0) then their Kronecker product is also a rank-1 projection operator.
4.3. Building the TOFFOLI Gate
4.4. Correspondence with Recent T-Gate Based Methods
5. Interpolation Synthesis of Multivalued Quantum Gates
5.1. OAM-1 System, for Ternary Min and Max Logical Gates
5.2. Quantum Gates for a Qutrit Balanced Calculator for Addition, Multiplication and Division
6. Discussion
Acknowledgments
References
- Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. A 1985, 400, 97–117. [Google Scholar]
- Toffano, Z. Eigenlogic in the spirit of George Boole. arXiv 2015, arXiv:1512.06632. [Google Scholar] [CrossRef]
- Dubois, F.; Toffano, Z. Eigenlogic: A Quantum View for Multiple-Valued and Fuzzy Systems. Quantum Interaction. QI 2016. In Lecture Notes in Computer Science; Springer: Berlin, Germany, 2017; Volume 10106, pp. 239–251. [Google Scholar]
- Cartier, P. A mad day’s work: From Grothendieck to Connes and Kontsevich The evolution of concepts of space and symmetry. Bull. Am. Math. Soc. 2001, 38, 389–408. [Google Scholar] [CrossRef]
- Neumann, J.V. Mathematische Grundlagen der Quantenmechanik. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin, Germany, 1932. [Google Scholar]
- Birkhoff, G.; Neumann, J.V. The Logic of Quantum Mechanics. Ann. Math. 1936, 37, 823–843. [Google Scholar] [CrossRef]
- Bub, J. Quantum computation from a quantum logical perspective. Quantum Inf. Comput. 2007, 7, 281–296. [Google Scholar]
- Ying, M. A theory of computation based on quantum logic (I). Theor. Comput. Sci. 2005, 344, 134–207. [Google Scholar] [CrossRef]
- Boole, G. The Mathematical Analysis of Logic: Being an Essay to a Calculus of Deductive Reasoning, Reissued ed.; Forgotten Books: London, UK, 1847; ISBN 978-1444006642-9. [Google Scholar]
- O’Donnell, R. Analysis of Boolean Functions; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Montanaro, A.; Osborne, T.J. Quantum Boolean Functions. Chic. J. Theor. Comput. Sci. 2010, 2010, 41. [Google Scholar]
- Post, E. Introduction to a General theory of Elementary Propositions. Am. J. Math. 1921, 43, 163–185. [Google Scholar] [CrossRef]
- Yanushkevich, S.N.; Shmerko, V.P. Introduction to Logic Design; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Kikuchi, N. Finite Element Methods in Mechanics; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Mermin, D. Quantum Computer Science: An Introduction; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Muller, D.E. Application of Boolean algebra to switching circuit design and to error detection. IRE Trans. Electron. Comput. 1954, 3, 6–12. [Google Scholar] [CrossRef]
- Amy, M.; Mosca, M. T-count optimization and Reed-Muller codes. arXiv 2016, arXiv:1601.07363. [Google Scholar] [CrossRef]
- Selinger, P. Quantum circuits of T-depth one. Phys. Rev. A 2013, 87, 252–259. [Google Scholar] [CrossRef]
- Miller, D.M.; Thornton, M.A. Multiple Valued Logic: Concepts and Representations; Morgan & Claypool Publishers: San Rafael, CA, USA, 2008. [Google Scholar]
- Jones, D.W. Fast Ternary Addition. Department of Computer Science, University of Iowa, 2013. Available online: http://www.cs.uiowa.edu/~jones/ternary/ (accessed on 16 November 2017).
Truth Table {F,T} | |||
---|---|---|---|
0 | |||
− U | |||
U = Z⊗I | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toffano, Z.; Dubois, F. Interpolating Binary and Multivalued Logical Quantum Gates. Proceedings 2018, 2, 152. https://doi.org/10.3390/ecea-4-05006
Toffano Z, Dubois F. Interpolating Binary and Multivalued Logical Quantum Gates. Proceedings. 2018; 2(4):152. https://doi.org/10.3390/ecea-4-05006
Chicago/Turabian StyleToffano, Zeno, and François Dubois. 2018. "Interpolating Binary and Multivalued Logical Quantum Gates" Proceedings 2, no. 4: 152. https://doi.org/10.3390/ecea-4-05006
APA StyleToffano, Z., & Dubois, F. (2018). Interpolating Binary and Multivalued Logical Quantum Gates. Proceedings, 2(4), 152. https://doi.org/10.3390/ecea-4-05006