The Symmetric and Antisymmetric Eigenvalue Problem for Electromagnetic Equilateral Triangular Waveguides via Plane Wave Reconstruction †
Conflicts of Interest
References
- Lamé, G.; de l’Ecole, J. Mémoire sur la propagation de la chaleur dans les polyèdres. Polytechnique 1833, 22, 194–251. [Google Scholar]
- Lamé, G. Leçons sur la Théorie Analytique de la Chaleur; Mallet-Bachelier: Paris, France, 1861. [Google Scholar]
- Lamé, G. Leçons sur la Théorie Mathématique de L’élasticité des Corps Solides; Gauthier-Villars: Paris, France, 1866. [Google Scholar]
- McCartin, B. Eigenstructure of the Equilateral Triangle, Part I: The Dirichlet Problem. SIAM Rev. 2003, 45, 267–287. [Google Scholar] [CrossRef]
- McCartin, B. Eigenstructure of the Equilateral Triangle, Part II: The Neumann Problem. Math. Probl. Eng. 2002, 8, 517–539. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asfar, O. The Symmetric and Antisymmetric Eigenvalue Problem for Electromagnetic Equilateral Triangular Waveguides via Plane Wave Reconstruction. Proceedings 2018, 2, 13. https://doi.org/10.3390/proceedings2010013
Asfar O. The Symmetric and Antisymmetric Eigenvalue Problem for Electromagnetic Equilateral Triangular Waveguides via Plane Wave Reconstruction. Proceedings. 2018; 2(1):13. https://doi.org/10.3390/proceedings2010013
Chicago/Turabian StyleAsfar, Omar. 2018. "The Symmetric and Antisymmetric Eigenvalue Problem for Electromagnetic Equilateral Triangular Waveguides via Plane Wave Reconstruction" Proceedings 2, no. 1: 13. https://doi.org/10.3390/proceedings2010013
APA StyleAsfar, O. (2018). The Symmetric and Antisymmetric Eigenvalue Problem for Electromagnetic Equilateral Triangular Waveguides via Plane Wave Reconstruction. Proceedings, 2(1), 13. https://doi.org/10.3390/proceedings2010013