Wavelength-Scanning Distributed Acoustic Sensing for Structural Monitoring and Seismic Applications †
Abstract
:1. Introduction
2. Methods
2.1. Wavelength-Scanning COTDR
2.2. Artificial Neural Networks (ANNs) for Strain Computation
3. Results
3.1. Dynamic Strain Sensing for Structural Monitoring
3.2. Application for Ground Movement Measurements in Dark Telecom Fibers
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Muanenda, Y. Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry. J. Sens. 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Masoudi, A.; Newson, T.P. Contributed Review: Distributed optical fibre dynamic strain sensing. Rev. Sci. Instrum. 2016, 87, 11501. [Google Scholar] [CrossRef] [PubMed]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-351-64530-0. [Google Scholar]
- Liehr, S.; Münzenberger, S.; Krebber, K. Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing. Opt. Express 2018, 26, 10573–10588. [Google Scholar] [CrossRef] [PubMed]
- Koyamada, Y.; Imahama, M.; Kubota, K.; Hogari, K. Fiber-Optic Distributed Strain and Temperature Sensing with Very High Measurand Resolution Over Long Range Using Coherent OTDR. J. Light. Technol. 2009, 27, 1142–1146. [Google Scholar] [CrossRef]
- Liehr, S.; Muanenda, Y.S.; Münzenberger, S.; Krebber, K. Relative change measurement of physical quantities using dual-wavelength coherent OTDR. Opt. Express 2017, 25, 720. [Google Scholar] [CrossRef] [PubMed]
- Liehr, S.; Jäger, L.A.; Karapanagiotis, C.; Münzenberger, S.; Kowarik, S. Real-time dynamic strain sensing in optical fibers using artificial neural networks. Opt. Express 2019, 27, 7405–7425. [Google Scholar] [CrossRef] [PubMed]
- Jousset, P.; Reinsch, T.; Ryberg, T.; Blanck, H.; Clarke, A.; Aghayev, R.; Hersir, G.P.; Henninges, J.; Weber, M.; Krawczyk, C.M. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 2018, 9, 2509. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, N.J.; Martin, E.R.; Dreger, D.S.; Freifeld, B.; Cole, S.; James, S.R.; Biondi, B.L.; Ajo-Franklin, J.B.; Ajo-Franklin, J.B. Fiber-Optic Network Observations of Earthquake Wavefields. Geophys. Res. Lett. 2017, 44, 11–792. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liehr, S.; Münzenberger, S.; Krebber, K. Wavelength-Scanning Distributed Acoustic Sensing for Structural Monitoring and Seismic Applications. Proceedings 2019, 15, 30. https://doi.org/10.3390/proceedings2019015030
Liehr S, Münzenberger S, Krebber K. Wavelength-Scanning Distributed Acoustic Sensing for Structural Monitoring and Seismic Applications. Proceedings. 2019; 15(1):30. https://doi.org/10.3390/proceedings2019015030
Chicago/Turabian StyleLiehr, Sascha, Sven Münzenberger, and Katerina Krebber. 2019. "Wavelength-Scanning Distributed Acoustic Sensing for Structural Monitoring and Seismic Applications" Proceedings 15, no. 1: 30. https://doi.org/10.3390/proceedings2019015030
APA StyleLiehr, S., Münzenberger, S., & Krebber, K. (2019). Wavelength-Scanning Distributed Acoustic Sensing for Structural Monitoring and Seismic Applications. Proceedings, 15(1), 30. https://doi.org/10.3390/proceedings2019015030