SAR-to-Infrared Domain Adaptation for Maritime Surveillance with Limited Data †
Abstract
1. Introduction
- 1.
- Improved IR detection performance, achieving more than a 17% increase in the Recall and Mean Average Precision (mAP).
- 2.
- Enhanced SAR classification performance, achieving a 3% increase in the F1-score compared to the baseline.
2. Methodology
2.1. Training Pipelines and Models
- 1.
- Detection-to-Detection (DET-DET): A VGG16 backbone shared with Faster R-CNN is initially trained on SAR detection data and subsequently fine-tuned on IR detection data, and vice versa.
- 2.
- Classification-to-Detection (CLS-DET): A VGG16-based classifier is first trained on SAR classification data. Its trained backbone is then integrated into Faster R-CNN and fine-tuned for IR detection tasks.
- 3.
- Detection-to-Classification (DET-CLS): A Faster R-CNN model with a VGG16 backbone is initially trained on IR detection data. The backbone is then extracted and fine-tuned for SAR classification tasks using a three-layer classifier.
2.2. Datasets
- 1.
- FuSAR-Ship [8]: A high-resolution SAR ship classification dataset comprising 15 main classes and 98 subclasses, with image dimensions of 512 × 512. For our experiments, we selected four primary classes: Bulk, Cargo, Tanker, and Fishing.
- 2.
- HRSID [9]: A high-resolution SAR ship detection dataset containing 16,951 images, each with a resolution of .
- 3.
- ISDD [10]: An IR ship detection dataset containing 3061 ship instances, with images sized .
2.3. Evaluation and Training Parameters
3. Results
3.1. Same-Task Adaptation: Detection-to-Detection (DET-DET)
3.2. Cross-Task Adaptation: Classification-to-Detection (CLS-DET) and Vice Versa (DET-CLS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Awais, C.M.; Reggiannini, M.; Moroni, D.; Salerno, E. A Survey on SAR ship classification using Deep Learning. arXiv 2025, arXiv:2503.11906. [Google Scholar]
- Wu, F.; Yu, H.; Liu, A.; Luo, J.; Peng, Z. Infrared Small Target Detection Using Spatiotemporal 4-D Tensor Train and Ring Unfolding. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–22. [Google Scholar] [CrossRef]
- Zhan, W.; Zhang, C.; Guo, S.; Guo, J.; Shi, M. EGISD-YOLO: Edge Guidance Network for Infrared Ship Target Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 10097–10107. [Google Scholar] [CrossRef]
- Xia, R.; Chen, J.; Huang, Z.; Wan, H.; Wu, B.; Sun, L.; Yao, B.; Xiang, H.; Xing, M. CRTransSar: A Visual Transformer Based on Contextual Joint Representation Learning for SAR Ship Detection. Remote Sens. 2022, 14, 1488. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ke, X.; Liu, C.; Xu, X.; Zhan, X.; Wang, C.; Ahmad, I.; Zhou, Y.; Pan, D.; et al. HOG-ShipCLSNet: A Novel Deep Learning Network With HOG Feature Fusion for SAR Ship Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–22. [Google Scholar] [CrossRef]
- Awais, C.M.; Reggiannini, M.; Moroni, D. A Framework for Imbalanced SAR Ship Classification: Curriculum Learning Weighted Loss Functions and a Novel Evaluation Metric. In Proceedings of the Winter Conference on Applications of Computer Vision, Tucson, AZ, USA, 28 February–4 March 2025; pp. 1570–1578. [Google Scholar]
- Rong, H.; Teixeira, A.; Soares, C.G. A framework for ship abnormal behaviour detection and classification using AIS data. Reliab. Eng. Syst. Saf. 2024, 247, 110105. [Google Scholar] [CrossRef]
- Hou, X.; Ao, W.; Song, Q.; Lai, J.; Wang, H.; Xu, F. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition. Sci. China Inf. Sci. 2020, 63, 1–19. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Han, Y.; Liao, J.; Lu, T.; Pu, T.; Peng, Z. KCPNet: Knowledge-Driven Context Perception Networks for Ship Detection in Infrared Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–19. [Google Scholar] [CrossRef]
Adaptation Scenario | Recall (%) | mAP (%) | ||
---|---|---|---|---|
Baseline | Ours | Baseline | Ours | |
SAR → IR (ISDD) | 21.73 | 41 (+19.3)▲ | 3.53 | 27.26 (+23.7%▲) |
IR → SAR (HRSID) | 39.97 | 40.91 (+1.0)▲ | 32.64 | 33.52 (+1.0%▲) |
Training Approach | Baseline (%) | Ours (%) | Metric |
---|---|---|---|
SAR Classification → IR Detection (ISDD) | 21.73 | ↑ 38.95 (+17▲) | Recall |
SAR Classification → IR Detection (ISDD) | 3.532 | ↑ 23.521 (+20▲) | mAP |
IR Detection → SAR Classification (Fusar) | 56.35 | ↑ 59.63 (+3▲) | F1-Score |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awais, C.M.; Reggiannini, M.; Moroni, D.; Galdelli, A. SAR-to-Infrared Domain Adaptation for Maritime Surveillance with Limited Data. Proceedings 2025, 129, 66. https://doi.org/10.3390/proceedings2025129066
Awais CM, Reggiannini M, Moroni D, Galdelli A. SAR-to-Infrared Domain Adaptation for Maritime Surveillance with Limited Data. Proceedings. 2025; 129(1):66. https://doi.org/10.3390/proceedings2025129066
Chicago/Turabian StyleAwais, Ch Muhammad, Marco Reggiannini, Davide Moroni, and Alessandro Galdelli. 2025. "SAR-to-Infrared Domain Adaptation for Maritime Surveillance with Limited Data" Proceedings 129, no. 1: 66. https://doi.org/10.3390/proceedings2025129066
APA StyleAwais, C. M., Reggiannini, M., Moroni, D., & Galdelli, A. (2025). SAR-to-Infrared Domain Adaptation for Maritime Surveillance with Limited Data. Proceedings, 129(1), 66. https://doi.org/10.3390/proceedings2025129066