Synergistic Application of Heat Source Reconstruction and Second-Harmonic Thermoelastic Stress Analysis for Rapid Metal Fatigue Characterisation †
Abstract
1. Introduction
2. Heat Source Reconstruction (HSR)
3. Second-Harmonic TSA (SHTSA)
4. Experiments
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, R.O. Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fract. 1999, 100, 55–83. [Google Scholar] [CrossRef]
- Douellou, C.; Balandraud, X.; Duc, E. Fatigue characterization by heat source reconstruction under continuously varying stress amplitude. Int. J. Fatigue 2022, 159, 106782. [Google Scholar] [CrossRef]
- La Rosa, G.; Risitano, A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int. J. Fatigue 2000, 22, 65–73. [Google Scholar] [CrossRef]
- Teng, Z. Thermo-based fatigue life prediction: A review. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 3121. [Google Scholar] [CrossRef]
- Chrysochoos, A.; Louche, H. An infrared image processing to analyse the calorific effects accompanying strain localisation. Int. J. Eng. Sci. 2000, 38, 1759–1788. [Google Scholar] [CrossRef]
- Wong, A.; Sparrow, J.; Dunn, S. On the revised theory of the thermoelastic effect. J. Phys. Chem. Solids 1988, 49, 395–400. [Google Scholar] [CrossRef]
- Wei, W.; He, L.; Sun, Y.; Yang, X. A Review of Fatigue Limit Assessment Using the Thermography-Based Method. Metals 2024, 14, 640. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omer, M.; Tighe, R.C.; Balandraud, X.; Jury, A.; Kuang, Y.C. Synergistic Application of Heat Source Reconstruction and Second-Harmonic Thermoelastic Stress Analysis for Rapid Metal Fatigue Characterisation. Proceedings 2025, 129, 35. https://doi.org/10.3390/proceedings2025129035
Omer M, Tighe RC, Balandraud X, Jury A, Kuang YC. Synergistic Application of Heat Source Reconstruction and Second-Harmonic Thermoelastic Stress Analysis for Rapid Metal Fatigue Characterisation. Proceedings. 2025; 129(1):35. https://doi.org/10.3390/proceedings2025129035
Chicago/Turabian StyleOmer, Muhammad, Rachael C. Tighe, Xavier Balandraud, Antoine Jury, and Ye Chow Kuang. 2025. "Synergistic Application of Heat Source Reconstruction and Second-Harmonic Thermoelastic Stress Analysis for Rapid Metal Fatigue Characterisation" Proceedings 129, no. 1: 35. https://doi.org/10.3390/proceedings2025129035
APA StyleOmer, M., Tighe, R. C., Balandraud, X., Jury, A., & Kuang, Y. C. (2025). Synergistic Application of Heat Source Reconstruction and Second-Harmonic Thermoelastic Stress Analysis for Rapid Metal Fatigue Characterisation. Proceedings, 129(1), 35. https://doi.org/10.3390/proceedings2025129035