Development of Far-Infrared Detectors for Nondestructive Inspection of Infrastructure Buildings †
Abstract
1. Introduction
2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Liu, X.; Manago, G.; Tadao, T.; Osanai, S.; Okubo, K. New Terahertz Wave Sorting Technology to Improve Plastic Containers and Packaging Waste Recycling in Japan. Recycling 2022, 7, 66. [Google Scholar] [CrossRef]
- Li, K.; Araki, T.; Utaki, R.; Tokumoto, Y.; Sun, M.; Yasui, S.; Kurihira, N.; Kasai, Y.; Suzuki, D.; Marteijn, R.; et al. Stretchable broadband photo-sensor sheets for nonsampling, source-free, and label-free chemical monitoring by simple deformable wrapping. Sci. Adv. 2022, 8, eabm4349. [Google Scholar] [CrossRef] [PubMed]
- Merchant, P.; Collins, R.; Kershaw, R.; Dwight, K.; Wold, A. The electrical, optical and photoconducting properties of Fe2−xCrxO3 (0 ≤ x ≤ 0.47). J. Solid State Chem. 1979, 27, 307–315. [Google Scholar] [CrossRef]
- Klekotka, U.; Zambrzycka-Szelewa, E.; Satuła, D.; Kalska-Szostko, B. Stability Studies of Magnetite Nanoparticles in Environmental Solutions. Materials 2021, 14, 5069. [Google Scholar] [CrossRef] [PubMed]
- Suman; Chahal, S.; Kumar, A.; Kumar, P. Zn Doped α-Fe2O3: An Efficient Material for UV Driven Photocatalysis and Electrical Conductivity. Crystals 2020, 10, 273. [Google Scholar] [CrossRef]
- Iwasaki, K.; Abe, S.; Tanabe, T. Mid-infrared detection device using magnetite substrates deposited by radio frequency sputtering method. AIP Adv. 2025, 15, 015127. [Google Scholar] [CrossRef]
- Abe, S. Nanocomposite thin films containing Pt nanoparticles dispersed in an α-Fe2O3 matrix by RF sputtering. AIP Adv. 2024, 14, 025348. [Google Scholar] [CrossRef]
Detector | Size | Weight | Environment | Power Supply | Sensitivity | Broadband | Average |
---|---|---|---|---|---|---|---|
HgCdTe(MCT) | 2 | 2 | 5 | 2 | 2 | 4 | 2.8 |
InSb, PbSe | 2 | 2 | 2 | 1 | 3 | 5 | 2.5 |
Si bolometer | 5 | 5 | 5 | 5 | 1 | 1 | 3.7 |
DTGS | 2 | 2 | 3 | 2 | 4 | 2 | 2.5 |
Golay cell | 3 | 3 | 4 | 5 | 3 | 3 | 3.5 |
Photoconductive antenna | 5 | 5 | 5 | 2 | 3 | 2 | 3.7 |
Schottky barrier diode | 1 | 1 | 1 | 2 | 3 | 3 | 1.8 |
Sample Number | Pt Concentration (at.%) | Electrical Resistivity (μΩcm) | Pt Chips |
---|---|---|---|
#1 | 6.9 | 4.1 × 103 | 8 |
#2 | 6.3 | 4.6 × 103 | 6 |
#3 | 3.8 | 6.6 × 103 | 4 |
#4 | 1.6 | 1.2 × 104 | 2 |
#5 | 1.6 | 1.4 × 104 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwasaki, K.; Abe, S.; Tanabe, T. Development of Far-Infrared Detectors for Nondestructive Inspection of Infrastructure Buildings. Proceedings 2025, 129, 16. https://doi.org/10.3390/proceedings2025129016
Iwasaki K, Abe S, Tanabe T. Development of Far-Infrared Detectors for Nondestructive Inspection of Infrastructure Buildings. Proceedings. 2025; 129(1):16. https://doi.org/10.3390/proceedings2025129016
Chicago/Turabian StyleIwasaki, Kazuma, Seishi Abe, and Tadao Tanabe. 2025. "Development of Far-Infrared Detectors for Nondestructive Inspection of Infrastructure Buildings" Proceedings 129, no. 1: 16. https://doi.org/10.3390/proceedings2025129016
APA StyleIwasaki, K., Abe, S., & Tanabe, T. (2025). Development of Far-Infrared Detectors for Nondestructive Inspection of Infrastructure Buildings. Proceedings, 129(1), 16. https://doi.org/10.3390/proceedings2025129016