Process of Copper Slag Reduction in an Electric Furnace and the Possibilities of Its Modelling †
1. Technological Background
2. Modelling Methodologies
3. Model of the Process
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steinacker, S.R.; Antrekowitsch, J. Kinetic investigation of the electric furnace copper slag treatment. In Proceedings of the 7th International Symposium on High-Temperature Metallurgical Processing, Nashville, TN, 14–18 February 2016; TMS (The Minerals, Metals & Materials Society); Springer: Gewerbestrasse, Switzerland, 2016. [Google Scholar]
- Degel, R.; Schreiter, T.; Schmieden, H.; Kempken, J. Rectangular furnace design and revolutionary DC-slag cleaning technology for the PGM industry. In International Platinum Conference ‘Platinum Surges Ahead’; The Southern African Institute of Mining and Metallurgy: Sun City, South Africa, 2006. [Google Scholar]
- Gunnewiek, L.; Oshinowo, L.; Haywood, T.P.I.R. The application of numerical modelling to the design of electric furnaces. In Proceedings of the Tenth International Ferroalloys Congress, Cape Town, South Africa, 1–4 February 2004. [Google Scholar]
- Inaba, S.; Kimura, Y.; Shibata, H.; Ohta, H. Measurement of Physical Properties of Slag Formed around the Raceway in the Working Blast furnace. ISIJ Int. 2004, 44, 2120–2126. [Google Scholar] [CrossRef]
- Szekely, J.; Mckelliget, J.; Choudhary, M. Heat-transfer fluid flow and bath circulation in electric-arc furnaces and DC plasma furnaces. Ironmak. Steelmak. 1983, 10, 169–179. [Google Scholar]
- Sheng, Y.; Irons, G.; Tisdale, D. Transport phenomena in electric smelting of nickel matte: Part I. Electric potential distribution. Metall. Mater. Trans. B 1998, 29, 77–83. [Google Scholar] [CrossRef]
- Sheng, Y.; Irons, G.; Tisdale, D. Transport phenomena in electric smelting of nickel matte: Part II. Mathematical modeling. Metall. Mater. Trans. B 1998, 29, 85–94. [Google Scholar] [CrossRef]
- Tesfahunegn, Y.; Magnusson, T.; Saevarsdottir, G.; Tangstad, M. The Effect of Pitch Circle Diameter of Electrodes on Current Distributions in Submerged Arc Furnace. In Proceedings of the IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, Reykjavik, Iceland, 8–10 August 2018. [Google Scholar]
- Tesfahunegn, Y.; Magnusson, T.; Tangstad, M.; Saevarsdottir, G. Dynamic Current and Power Distributions in a Submerged Arc Furnace. In Material Processing Fundamentals; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Tesfahunegn, Y.; Magnusson, T.; Saevarsdottir, G.; Tangstad, M. The Effect of Frequency on Current Distributions Inside Submerged Arc Furnace. In Proceedings of the IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, Reykjavik, Iceland, 8–10 August 2018. [Google Scholar]
- Scheepers, E.; Yang, Y.; Adema, A.T.; Boom, R.; Reuter, M.A. Process Modeling and Optimization of a Submerged Arc Furnace for Phosphorus Production. Met. Mater. Trans. B 2010, 41, 990–1005. [Google Scholar] [CrossRef]
- Bezuidenhout, J.; Eksteen, J.; Bradshaw, S. CFD modelling of molten matte and slag flows in a circular three-phase smelting furnace. Prog. Comput. Fluid Dyn. Int. J. 2009, 9, 316. [Google Scholar] [CrossRef]
- Bezuidenhout, J.; Eksteen, J.; Bradshaw, S. Computational fluid dynamic modelling of an electric furnace used in the smelting of PGM containing concentrates. Miner. Eng. 2009, 22, 995–1006. [Google Scholar] [CrossRef]
- Ritchie, S.; Eksteen, J. Investigating the effect of slag bath conditions on the existence of multiphase emulsion zones in PGM smelting furnaces using computation fluid dynamics. Miner. Eng. 2011, 24, 661–675. [Google Scholar] [CrossRef]
- Wei, G.; Zhu, R.; Han, B.; Yang, S.; Dong, K.; Wu, X. Simulation and Application of Submerged CO2-O2 Injection in Electric Arc Furnace Steelmaking: Modeling and Arrangement of Submerged nozzles. Met. Mater. Trans. B 2020, 51, 1101–1112. [Google Scholar] [CrossRef]
- Karalis, K.; Karkalos, N.; Cheimarios, N.; Antipas, G.; Xenidis, A.; Boudouvis, A. A CFD analysis of slag properties, electrode shape and immersion depth effects on electric submerged arc furnace heating in ferronickel processing. Appl. Math. Model. 2016, 40, 9052–9066. [Google Scholar] [CrossRef]
- Karalis, K.; Karalis, N.; Karkalos, N.; Ntallis, N.; Antipas, G.S.E.; Xenidis, A. Three-dimensional computational fluid dynamics analysis of an electric submerged arc furnace. Sci. Rep. 2021, 11, 17637. [Google Scholar] [CrossRef] [PubMed]
- Latest Results of the Intensive Slag Cleaning Reactor for Metal recovery on the Basis of Copper. Available online: https://www.researchgate.net/publication/283552640_Latest_results_of_the_intensive_slag_cleaning_reactor_for_metal_recovery_on_the_basis_of_copper (accessed on 15 June 2024).
- Warczok, A.; Riveros, G. Slag cleaning in crossed electric and magnetic fields. Miner. Eng. 2007, 20, 34–43. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Tang, S.; Wang, F. Analysis and optimization about electromagnetics-temperature-component distribution in calcium carbide electric furnace. Appl. Therm. Eng. 2021, 185, 115980. [Google Scholar] [CrossRef]
- Zhang, X.-K.; He, Y.-L.; Tang, S.-Z.; Wang, F.-L.; Xie, T. An electromagnetics-temperature-component multi-physical coupled model for electric furnace in calcium carbide smelting process. Appl. Therm. Eng. 2020, 165, 114552. [Google Scholar] [CrossRef]
- Cui, H.-N.; Li, T.; Bai, C.-G.; Tan, M.; Zhu, Y.-L. Numerical simulation of coupling multi-physical field in electrical arc furnace for smelting titanium slag. J. Iron Steel Res. Int. 2023, 30, 2194–2209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zybała, R.; Golak, S.; Sak, T.; Madej, P. Process of Copper Slag Reduction in an Electric Furnace and the Possibilities of Its Modelling. Proceedings 2024, 108, 5. https://doi.org/10.3390/proceedings2024108005
Zybała R, Golak S, Sak T, Madej P. Process of Copper Slag Reduction in an Electric Furnace and the Possibilities of Its Modelling. Proceedings. 2024; 108(1):5. https://doi.org/10.3390/proceedings2024108005
Chicago/Turabian StyleZybała, Radosław, Sławomir Golak, Tomasz Sak, and Piotr Madej. 2024. "Process of Copper Slag Reduction in an Electric Furnace and the Possibilities of Its Modelling" Proceedings 108, no. 1: 5. https://doi.org/10.3390/proceedings2024108005
APA StyleZybała, R., Golak, S., Sak, T., & Madej, P. (2024). Process of Copper Slag Reduction in an Electric Furnace and the Possibilities of Its Modelling. Proceedings, 108(1), 5. https://doi.org/10.3390/proceedings2024108005