Oxidative Potential of Selected PM Components †
Abstract
:1. Introduction
2. Experiments
2.1. Dust Collection
2.2. Chemical Characterization of Dusts
2.3. Extraction Procedure
2.4. Oxidative Potential Assays
2.4.1. DTT Procedure
2.4.2. DCFH Procedure
2.4.3. AA Procedure
3. Results
Results of Principal Component Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
PM | Particulate Matter |
ROS | Reactive Oxygen Species |
OP | Oxidative Potencial |
DTT | Dithiothreitol |
DCFH | 2′,7′-Dichlorofluorescin |
AA | Acid Ascorbic |
OC | Organic Carbon |
IC | inorganic Ions |
EC | Elemental Carbon |
ICP-MS | Inductively Coupled Plasma- Mass Spectroscopy |
PCA | Principal Component Analysis |
NPOC | Non Purgeable Organic Carbon |
WSOC | Water Soluble Organic Carbon |
References
- Brunekreef, B.; Stephen, T.; Holgate, S.T.H. Air Pollution and Health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Hoek, G.; Ranjini, M.K.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. Long-Term Air Pollution Exposure and Cardio-Respiratory Mortality: A Review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.; et al. Particulate Matter Air Pollution and Cardiovascular Disease an Update to the Scientific Statement From the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Stone, V.; Borm, P.J.; Jimenez, L.A.; Gilmour, P.S.; Schins, R.P.; Knaapen, A.M.; Rahman, I.; Faux, S.P.; Brown, D.M.; et al. Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic. Biol. Med. 2003, 34, 1369–1382. [Google Scholar] [CrossRef]
- Nel, A. Air pollution-related illness: Effects of particles. Science 2005, 308, 804–806. [Google Scholar] [CrossRef]
- Shi, T.; Knaapen, A.M.; Begerow, J.; Birmili, W.; Borm, P.J.; Schins, R.P. Temporal variation of hydroxyl radical generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occup. Environ. Med. 2003, 60, 315–321. [Google Scholar] [CrossRef]
- Shi, T.; Schins, R.P.; Knaapen, A.M.; Kuhlbusch, T.; Pitz, M.; Heinrich, J.; Borm, P.J. Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition. J. Environ. Monit. 2003, 5, 550–556. [Google Scholar] [CrossRef]
- Zielinski, H.; Mudway, I.S.; Berube, K.A.; Murphy, S.; Richards, R.; Kelly, F.J. Modeling the interactions of particulates with epithelial lining fluid antioxidants. Am. J. Physiol. 1999, 277, L719–L726. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, Source and Chemical Composition as Determinants of Toxicity Attributable to Ambient Particulate Matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Meiying, W.; Oberley, T.; Froines, J.; Nel, A. Ultrafine Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage. Environ. Health Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef]
- Sheesley, R.J.; Schauer, J.J.; Chowdhury, Z.; Cass, G.R.; Simoneit, B.R.T. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. J. Geophys. Res. Atmos. 2003, 108, 4285. [Google Scholar] [CrossRef]
- Donaldson, K.; Stone, V.; Seaton, A.; MacNee, W. Ambient Particle Inhalation and the Cardiovascular System: Potential Mechanisms. Environ. Health Perspect. 2001, 109, 523–527. [Google Scholar]
- Cho, A.K.; Sioutas, C.; Miguel, A.H.; Kumagai, Y.; Schmitz, D.A.; Singh, M.; Eiguren-Fernandez, A.; Froines, J.R. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ. Res. 2005, 99, 40–47. [Google Scholar] [CrossRef]
- Fang, T.; Verma, V.; Bates, J.T.; Abrams, J.; Klein, M.; Strickland, M.J.; Sarnat, S.E.; Chang, H.H.; Mulholland, J.A.; Tolbert, P.E.; et al. Oxidative Potential of Ambient Water-Soluble PM2.5 in the Southeastern United States: Contrasts in Sources and Health Associations between Ascorbic Acid (AA) and Dithiothreitol (DTT) Assays. Atmos. Chem. Phys. 2016, 16, 3865–3879. [Google Scholar] [CrossRef]
- Kumagai, Y.; Koide, S.; Taguchi, K.; Endo, A.; Nakai, Y.; Yoshikawa, T.; Shimojo, N. Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem. Res. Toxicol. 2002, 15, 483–489. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef]
- Hung, H.F.; Wang, C.S. Experimental determination of reactive oxygen species in Taipei aerosols. J. Aerosol Sci. 2001, 32, 1201–1211. [Google Scholar] [CrossRef]
- Venkatachari, P.; Hopke, P.K.; Grover, B.D.; Eatough, D.J. Measurement of Particle-Bound Reactive Oxygen Species in Rubidoux Aerosols. J. Atmos. Chem. 2005, 50, 49–58. [Google Scholar] [CrossRef]
- Venkatachari, P.; Hopke, P.K.; Brune, W.H.; Ren, X.; Lesher, R.; Mao, J.; Mitchell, M. Characterization of Wintertime Reactive Oxygen Species Concentrations in Flushing, New York. Aerosol Sci. Technol. 2007, 41, 97–111. [Google Scholar] [CrossRef]
- Lebel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef]
- Keston, A.S.; Brandt, R. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 1965, 11, 1–5. [Google Scholar] [CrossRef]
- Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef]
- Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol. 2004, 142, 231–255. [Google Scholar] [CrossRef]
- Chirizzi, D.; Cesari, D.; Guascito, M.R.; Dinoi, A.; Giotta, L.; Donateo, A.; Contini, D. Influence of Saharan Dust Outbreaks and Carbon Content on Oxidative Potential of Water-Soluble Fractions of PM2.5 and PM10. Atmos. Environ. 2017, 163, 1–8. [Google Scholar] [CrossRef]
- Marcoccia, M.; Ronci, L.; De Matthaeis, E.; Setini, A.; Perrino, C.; Canepari, S. In Vivo Assesment of the Genotoxic and Oxidative Stress Effects of Particulate Matter on Echinogammarus Veneris. Chemosphere 2017, 173, 124–134. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Canepari, S.; Perrino, C.; Olivieri, F.; Astolfi, M.L. Characterisation of the traffic sources of PM through sizesegregated sampling, sequential leaching and ICP analysis. Atmos. Environ. 2008, 42, 8161–8175. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Canepari, S.; Marconi, E.; Astolfi, M.L.; Perrino, C. Relevance of Sb (III), Sb (V), and Sb-containing nano-particles in urban atmospheric particulate matter. Anal. Bioanal. Chem. 2010, 397, 2533–2542. [Google Scholar] [CrossRef]
- Goudie, A. Desert dust and human health disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef]
- De Oliveira Alves, N.; Matos Loureiro, A.L.; Cavalcante dos Santos, F.; Halter Nascimento, K.; Dallacort, R.; De Castro Vasconcellos, P.; De souza Hacon, S.; Artaxo, P.; Batistuzzo de Medeiros, S.R. Genotoxicity and composition of particulate matter from biomass burning in the eastern Brazilian Amazon region. Ecotoxicol. Environ. Saf. 2011, 74, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Taioli, E.; Šrám, R.J.; Garte, S.; Kalina, I.; Popov, T.A.; Farmer, P.B. Effects of Polycyclic Aromatic Hydrocarbons (PAHs) in Environmental Pollution on Exogenous and Oxidative DNA Damage (EXPAH Project): Description of the Population under Study. Mutat. Res. 2007, 620, 1–6. [Google Scholar] [CrossRef]
- Vernile, P.; Tutino, M.; Bari, G.; Amodio, M.; Spagnuolo, M.; De Gennaro, G.; De Lillo, E. Particulate matter toxicity evaluation using bioindicators and comet assay. Aerosol Air Qual. Res. 2013, 13, 172–178. [Google Scholar] [CrossRef]
- Knaapen, A.M.; Shi, T.; Borm, P.J.; Schins, R.P. Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. Mol. Cell Biochem. 2002, 1, 317–326. [Google Scholar] [CrossRef]
- Yi, S.; Zhang, F.; Qu, F.; Ding, W. Water-insoluble fraction of airborne particulate matter (PM10) induces oxidative stress in human lung epithelial A549 cells. Environ. Toxicol. 2014, 2, 226–233. [Google Scholar] [CrossRef]
- Pietrodangelo, A.; Salzano, R.; Rantica, E.; Perrino, C. Characterisation of the local topsoil contribution to airborne particulate matter in the area of Rome (Italy). Source profiles. Atmos. Environ. 2013, 69, 1–14. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Zhang, Y.; Fang, D.; Schauer, J.J. Optimization of the Measurement of Particle-Bound Reactive Oxygen Species with 2′,7′-dichlorofluorescin (DCFH). Water Air Soil Pollut. 2016, 227, 164. [Google Scholar] [CrossRef]
- Canepari, S.; Astolfi, M.L.; Farao, C.; Maretto, M.; Frasca, D.; Marcoccia, M.; Perrino, C. Seasonal variations in the chemical composition of particulate matter: A case study in the Po Valley. Part II: Concentration and solubility of micro- and trace-elements. Environ. Sci. Pollut. Res. 2014, 21, 4010–4022. [Google Scholar] [CrossRef]
Nist1648a | Brake Dust | Coke | Road Dust | Saharian Dust | Soil Dust | Ash Pellet | |||
---|---|---|---|---|---|---|---|---|---|
Technique | UoM | Mean | Mean | Mean | Mean | Mean | Mean | Mean | |
ICP-MS | g/Kg | Al | 0.28 | 0.162 | 0.9 | 1.76 | 0.4 | 0.69 | 0.097 |
ICP-MS | mg/Kg | As | 81 | 1.13 | 0.60 | 2.1 | 1.1 | 7.9 | 2.9 |
ICP-MS | mg/Kg | B | 19.0 | 8.5 | 2.8 | 1.7 | 11.0 | 0.4 | 590 |
IC | g/Kg | Ca | 9.6 | 27.9 | 1.29 | 48 | 17.1 | 139 | 74 |
ICP-MS | mg/Kg | Cd | 48 | 0.30 | 0.02 | 0.07 | 0.12 | 0.019 | 13 |
ICP-MS | mg/Kg | Ce | 0.180 | 0.106 | 0.022 | 2.2 | 0.16 | 0.30 | 0.041 |
IC | mg/Kg | Cl | 4540 | 660 | 19 | 190 | 1220 | 41 | 1090 |
ICP-MS | mg/Kg | Co | 5.40 | 1.06 | 0.05 | 0.62 | 0.18 | 0.24 | 4.3 |
ICP-MS | mg/Kg | Cr | 28.0 | 24.7 | 0.83 | 13.7 | 4.0 | 3.8 | 4.6 |
ICP-MS | mg/Kg | Cs | 0.003 | 0.210 | 0.010 | 0.212 | 0.020 | 0.28 | 2.7 |
ICP-MS | mg/Kg | Cu | 275 | 765 | 13 | 9 | 3 | 1.2 | 37 |
ICP-MS | g/Kg | Fe | 5.9 | 6.4 | 1.0 | 0.46 | 0.24 | 0.43 | 0.02 |
ICP-MS | mg/Kg | La | 0.160 | 0.067 | 0.011 | 1.585 | 0.111 | 0.17 | 0.062 |
ICP-MS | mg/Kg | Mn | 340 | 119.7 | 6.4 | 29.7 | 6.2 | 25 | 1751 |
ICP-MS | mg/Kg | Mo | 5.70 | 3.80 | 0.827 | 0.038 | 0.009 | 0.053 | 3.6 |
ICP-MS | mg/Kg | Ni | 20.0 | 3.97 | 1.88 | 1.15 | 0.8 | 1.6 | 9 |
ICP-MS | mg/Kg | Pb | 2424 | 5.94 | 9.85 | 5.36 | 2.5 | 0.54 | 0.42 |
ICP-MS | mg/Kg | Rb | 26.4 | 5.6 | 0.6 | 0.68 | 6.4 | 0.8 | 310 |
ICP-MS | mg/Kg | Sb | 26.0 | 13.9 | 0.16 | 0.047 | 0.415 | 0.002 | 1.6 |
ICP-MS | mg/Kg | Se | 5.7 | 0.27 | 0.37 | 0.44 | 1.2 | 0.15 | 23 |
ICP-MS | g/kg | Si | 1.41 | 0.52 | 0.4 | 5.2 | 1.48 | 0.32 | 0.39 |
ICP-MS | mg/Kg | Sn | 0.310 | 1.62 | 0.130 | 0.056 | 0.002 | 0.09 | 0.46 |
ICP-MS | mg/Kg | Sr | 125 | 98 | 4 | 164 | 350 | 150 | 542 |
ICP-MS | mg/Kg | Ti | 1.20 | 0.98 | 13 | 7.6 | 8.6 | 13.1 | 0.061 |
ICP-MS | mg/Kg | Tl | 0.008 | 0.04 | 0.002 | 0.026 | 0.03 | 0.014 | 1.05 |
ICP-MS | mg/Kg | V | 89 | 1.29 | 1.08 | 2.14 | 0.84 | 1.2 | 3.7 |
ICP-MS | mg/Kg | Zn | 1023 | 2120 | 100 | 673 | 7 | 18 | 525 |
ICP-MS | mg/Kg | Zr | 0.270 | 2.31 | 0.018 | 4.83 | 0.007 | 0.58 | 0.07 |
IC | g/Kg | NO2- | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 6.5 |
IC | g/Kg | NO3- | 47 | 4.0 | <0.1 | <0.1 | <0.1 | <0.1 | 2.2 |
IC | g/Kg | SO4- | 154 | 5.9 | <0.1 | <0.1 | 28.0 | 0.9 | 37 |
TOC | g/Kg | WSOC | 22 | 5.7 | 9.5 | 2.1 | 0.53 | 0.3 | 22 |
Nist1648a | Brake Dust | Coke | Road Dust | Saharian Dust | Soil Dust | Ash Pellet | |||
---|---|---|---|---|---|---|---|---|---|
Technique | UoM | Mean | Mean | Mean | Mean | Mean | Mean | Mean | |
XRF/ICP-MS | g/Kg | Al | 34 * | 14.7 | 12 | 70 | 69 | 9.7 | 6.1 |
ICP-MS | mg/Kg | As | 35.0 | 18.0 | 0.52 | 1.6 | 0.3 | 87 | 2.3 |
ICP-MS | mg/Kg | B | 44 | 23.1 | 0.7 | 48.2 | 2.2 | 1.2 | 235 |
XRF/IC | g/Kg | Ca | 53 * | 12.9 | 1.38 | 29 | 15 | 131 | 74 |
ICP-MS | mg/Kg | Cd | 26 | 0.73 | 0.05 | 0.28 | 0.76 | 0.072 | 20 |
ICP-MS | mg/Kg | Ce | 546 | 26.2 | 0.3 | 109 | 1.0 | 10 | 9 |
XRF/IC | mg/Kg | Cl | - | - | 1.0 | - | 100 | - | - |
ICP-MS | mg/Kg | Co | 13.0 | 13.9 | 1.02 | 10.8 | 0.55 | 1.6 | 9 |
XRF/ICP-MS | mg/Kg | Cr | 374 * | 3083 | 9.6 | 57 | 48 | 36 | 20.4 |
ICP-MS | mg/Kg | Cs | 1.70 | 2.99 | 0.04 | 20.90 | 0.005 | 2.5 | 0.43 |
ICP-MS | mg/Kg | Cu | 336 | 4286 | 43 | 71 | 10 | 13 | 204 |
XRF/ICP-MS | g/Kg | Fe | 33 * | 198 | 16 | 59 | 40.7 | 3.5 | 3.7 |
ICP-MS | mg/Kg | La | 32 | 12.7 | 0.3 | 54.4 | 26.5 | 5 | 5.5 |
ICP-MS | mg/Kg | Mn | 450 | 1093 | 40 | 475 | 22.5 | 96 | 17869 |
ICP-MS | mg/Kg | Mo | 8.30 | 171 | 75.5 | 0.83 | 0.15 | 0.65 | 1.2 |
ICP-MS | mg/Kg | Ni | 61.0 | 108 | 355 | 14.2 | 5.1 | 9 | 28 |
ICP-MS | mg/Kg | Pb | 4127 | 677 | 8.9 | 67.0 | 0.010 | 11 | 55 |
ICP-MS | mg/Kg | Rb | 26 | 27 | 0.5 | 240 | 1.1 | 10 | 31 |
ICP-MS | mg/Kg | Sb | 23.4 | 292 | 4.07 | 0.204 | 2.08 | 0.4 | 1.7 |
ICP-MS | mg/Kg | Se | 20 | 9.0 | 9.0 | 3.1 | 0.37 | 11 | 0.02 |
XRF/ICP-MS | g/Kg | Si | 128 * | 26 | 21 | 173 | 228 | 16 | 6.5 |
ICP-MS | mg/Kg | Sn | 55.0 | 1419 | 14.7 | 1.97 | 0.02 | 2.7 | 21 |
ICP-MS | mg/Kg | Sr | 90 | 159 | 6 | 674 | 2.7 | 375 | 717 |
XRF/ICP-MS | mg/Kg | Ti | 3900 * | 526 | 894 | 3835 | 4532 | 241 | 18.9 |
ICP-MS | mg/Kg | Tl | 1.9 | 0.3 | 0.03 | 1.30 | 0.004 | 0.11 | 0.9 |
ICP-MS | mg/Kg | V | 38 | 7.6 | 557 | 118 | 4.9 | 10 | 8 |
ICP-MS | mg/Kg | Zn | 1200 | 3197 | 160 | 318 | 40 | 86 | 1157 |
ICP-MS | mg/Kg | Zr | 28.0 | 87 | 11.1 | 89 | 9.4 | 12 | 10 |
ECOC | g/Kg | EC | 23.0 | 17 | 310 | 0.07 | |||
ECOC/TOC | g/Kg | WIOC | 83 | 30 | 146 | 12 | 0.10 | 41 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conte, E.; Canepari, S.; Frasca, D.; Simonetti, G. Oxidative Potential of Selected PM Components. Proceedings 2017, 1, 108. https://doi.org/10.3390/ecas2017-04131
Conte E, Canepari S, Frasca D, Simonetti G. Oxidative Potential of Selected PM Components. Proceedings. 2017; 1(5):108. https://doi.org/10.3390/ecas2017-04131
Chicago/Turabian StyleConte, Elena, Silvia Canepari, Daniele Frasca, and Giulia Simonetti. 2017. "Oxidative Potential of Selected PM Components" Proceedings 1, no. 5: 108. https://doi.org/10.3390/ecas2017-04131
APA StyleConte, E., Canepari, S., Frasca, D., & Simonetti, G. (2017). Oxidative Potential of Selected PM Components. Proceedings, 1(5), 108. https://doi.org/10.3390/ecas2017-04131