Validation of the Overseer Cropping Model for Estimating Nitrate Leaching Losses in Precision Agriculture
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Soil
2.2. Lysimeter Design, and Arrangement
2.3. Experimental Design, Planting, and N Fertilizer Treatments
2.4. Total Nitrogen Uptake Determination
2.5. Measurement and Modelling of Nitrate Leaching Losses from the Lysimeters
2.5.1. Overview of Overseer Model
2.5.2. Input Data Requirements of the Model for Lysimeter Simulations
- (i)
- Soil data
- (ii)
- Weather data
- (iii)
- Crop data
- (iv)
- Input data on N additions
2.5.3. Nitrate Leaching Simulations
2.6. Error Analysis of Overseer
2.6.1. Mean Difference (Md)
2.6.2. Root Mean Square Error (RMSE)
2.6.3. Percent of Relative Error (Er%)
2.6.4. Regression Equation
2.7. Sensitivity Analysis
2.8. Data Analysis
3. Results
3.1. Simulated Annual Water Fluxes
3.2. Cumulative Nitrate Leaching Losses During Beetroot Cropping
3.3. Cumulative Nitrate Leaching Losses During Pak Choi Cropping
3.4. Crop N Uptake
3.5. Results of the Sensitivity Analysis
3.5.1. Length of Fallow Period
3.5.2. Impeded Layer Depth
3.5.3. Soil Group and Texture
3.5.4. Saturated Hydraulic Conductivity
3.5.5. Amount of Incorporated Material
3.6. Evaluation of the Precision of Overseer
4. Discussion
4.1. Nitrate Leaching Predictions
Nitrogen Use Efficiency and N Fate
4.2. Sensitivity of the Model
4.3. Evaluation of the Precision of Overseer Under Different Fertilizer Regimes
4.4. Overall Simulation Performance of Overseer
4.5. Uncertainties Associated with the Simulation Scenarios
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| N | Nitrogen |
| NO3− | Nitrate |
| Md | Mean Difference |
| RMSE | Root Mean Square Error |
| Er | Error |
| CAN | Calcium Ammonium Nitrate |
| CRF | Controlled Release Fertilizer |
| EXC | Excess |
| STD | Standard |
| SCRUM-APSIM | Simple Crop Resource Uptake Model-Agricultural Production Systems sIMulator |
References
- Francis, G.S.; Trimmer, L.A.; Tregurtha, C.S.; Williams, P.H.; Butler, R.C. Winter nitrate leaching losses from three land uses in the Pukekohe area of New Zealand. N. Z. J. Agric. Res. 2003, 46, 215–224. [Google Scholar] [CrossRef]
- Cichota, R.; Snow, V.O. Estimating nutrient loss to waterways—An overview of models of relevance to New Zealand pastoral farms. N. Z. J. Agric. Res. 2009, 52, 239–260. [Google Scholar] [CrossRef][Green Version]
- Lilburne, L.; Webb, T.; Ford, R.; Bidwell, V.J. Estimating Nitrate-N Leaching Rates Under Rural Land Uses in Canterbury; Environment Canterbury Regional Council: Christchurch, New Zealand, 2010. Available online: https://www.researchgate.net/publication/277039127_Estimating_nitrate-nitrogen_leaching_rates_under_rural_land_uses_in_Canterbury#fullTextFileContent (accessed on 24 August 2025).
- Wheeler, D.M.; Ledgard, S.F.; Monaghan, R.M.; McDowell, R.W.; de Klein, C.A.M. Overseer nutrient budget model—What it is, what it does. In Implementing Sustainable Nutrient Management Strategies in Agriculture; Currie, L.D., Hanly, J.A., Eds.; Occasional Report No. 19; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2006; pp. 231–236. Available online: https://www.researchgate.net/profile/Rw-Mcdowell/publication/285807876_OVERSEER_nutrient_budget_model_-_what_it_is_what_it_does/links/566f242d08aec0bb67bf038b/OVERSEER-nutrient-budget-model-what-it-is-what-it-does.pdf (accessed on 22 October 2025).
- Williams, R.; Brown, H.; Dunbier, M.; Edmeades, D.; Hill, R.; Metherell, A.; Thorburn, P. A critical examination of the role of Overseer® in modelling nitrate losses from arable crops. In Accurate and Efficient Use of Nutrients on Farms; Currie, L.D., Christensen, C.L., Eds.; Occasional Report No. 26; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2013; pp. 1–8. Available online: https://www.massey.ac.nz/~flrc/workshops/13/Manuscripts/Paper_Williams_2013.pdf (accessed on 22 October 2025).
- Tavernet, J.P. Overseer assessment of modelling N leaching under pasture. In Opportunities for Improved Farm and Catchment Outcomes; Christensen, C.L., Horne, D.J., Singh, R., Eds.; Occasional Report No. 36; Farmed Landscapes Research Centre, Massey University: Palmerston North, New Zealand, 2024; pp. 1–7. Available online: https://flrc.massey.ac.nz/workshops/24/Manuscripts/Tavernet_JP.pdf (accessed on 5 September 2025).
- Welten, B.; Mercer, G.; Smith, C.; Sprosen, M.; Ledgard, S. Refining Estimates of N Leaching for the New Zealand Agricultural Greenhouse gas Inventory; MPI Technical Paper No: 2022/05; Ministry for Primary Industries: Wellington, New Zealand, 2021. Available online: https://www.mpi.govt.nz/dmsdocument/50431-Refining-estimates-of-N-leaching-for-the-New-Zealand-agricultural-greenhouse-gas-inventory-Report/ (accessed on 6 November 2025).
- Selbie, D.R.; Buckthought, L.E.; Shepherd, M.A. The challenge of the urine patch for managing nitrogen in grazed pasture systems. Adv. Agron. 2015, 129, 229–292. [Google Scholar] [CrossRef]
- Ledgard, S.; Williams, P.; Broom, F.; Thorrold, B.; Wheeler, D.; Willis, V. Overseer—A nutrient budgeting model for pastoral farming, wheat, potatoes, apples and kiwifruit. In Best Soil Management Practices for Production; Currie, L.D., Hedley, M.J., Horne, D.J., Loganathan, P., Eds.; Occasional Report No. 12; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 1999; pp. 143–152. Available online: https://flrc.massey.ac.nz/workshops/older/paperlist-99.html (accessed on 27 October 2025).
- Avendaño, F.; Horne, D.; Singh, R.; Palmer, A.; Cichota, R.; Bloomer, D. Quantification of nitrate-N losses under intensive vegetable production systems in New Zealand. N. Z. J. Crop Hortic. Sci. 2025, 53, 3091–3112. [Google Scholar] [CrossRef]
- Quemada, M.; Baranski, M.; Nobel-de Lange, M.; Vallejo, A.; Cooper, J.M. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosyst. Environ. 2013, 174, 1–10. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, C.; Huang, W.; Sun, X.; Tan, Q.; Di, H.J. Design, construction and installation of large soil core lysimeters. Trans. Chin. Soc. Agric. Eng. 2010, 26, 48–53. [Google Scholar] [CrossRef]
- Blakemore, L.; Searle, P.; Daly, B. Methods for Chemical Soil Analysis; New Zealand Soil Bureau Scientific Report 80; Department of Scientific and Industrial Research: Lower Hutt, New Zealand, 1987; pp. 72–103. [Google Scholar] [CrossRef]
- Watkins, N.; Shepherd, M.A. Compendium of New Zealand pasture farmlet experiments measuring N leaching. In Nutrient Management for the Farm, Catchment and Community; Currie, L.D., Christensen, C.L., Eds.; Occasional Report No. 27; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2014; pp. 1–13. Available online: https://flrc.massey.ac.nz/workshops/14/Manuscripts/Paper_Watkins_2014.pdf (accessed on 14 November 2025).
- Wheeler, D. Overseer scenarios. In Nutrient Management in a Rapidly Changing World; Currie, L.D., Lindsay, L., Eds.; Occasional Report 22; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2009; pp. 335–340. Available online: https://flrc.massey.ac.nz/workshops/09/Abstracts%202009.pdf (accessed on 7 May 2025).
- Addiscott, T.; Whitmore, A. Computer simulation of changes in soil mineral N and crop N during autumn, winter and spring. J. Agric. Sci. 1987, 109, 141–157. [Google Scholar] [CrossRef]
- Minitab, version 19.1.1; Statistical Software; Minitab: State College, PA, USA, 2010.
- Wheeler, D.M. OVERSEER Technical Manual: Technical Manual for the Description of the OVERSEER® Nutrient Budgets Engine—Characteristics of Crops; Overseer Ltd.: Wellington, New Zealand, 2018; pp. 18–20. Available online: https://www.researchgate.net/publication/289904795_OVERSEER_Technical_Manual (accessed on 12 May 2025).
- Science Advisory Panel. Overseer Whole-Model Review: Assessment of the Model Approach; MPI Technical Paper no: 2021/12; New Zealand Government: Wellington, New Zealand, 2021. Available online: https://www.mpi.govt.nz (accessed on 19 October 2025).
- Overseer Ltd. New Report Backs OverseerFM. Overseer|Farming Software New Zealand. 2023. Available online: https://overseer.org.nz/articles/new-report-backs-overseerfm/ (accessed on 28 August 2025).
- Thomas, S.M.; Ledgard, S.F.; Francis, G.S. Improving estimates of nitrate leaching for quantifying New Zealand’s indirect nitrous oxide emissions. Nutr. Cycl. Agroecosyst. 2005, 73, 213–226. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef]
- Rathnappriya, R.H.K.; Sakai, K.; Okamoto, K.; Kimura, S.; Haraguchi, T.; Nakandakari, T.; Setouchi, H.; Bandara, W.B.M.A.C. Global sensitivity analysis of key parameters in the APSIMX-Sugarcane model to evaluate nitrate balance via treed Gaussian process. Agronomy 2022, 12, 1979. [Google Scholar] [CrossRef]
- Liang, H.; Qi, Z.; DeJonge, K.C.; Hu, K.; Li, B. Global sensitivity and uncertainty analysis of nitrate leaching and crop yield simulation under different water and N management practices. Comput. Electron. Agric. 2017, 142, 201–210. [Google Scholar] [CrossRef]
- Wey, H.; Hunkeler, D.; Bischoff, W.A.; Bünemann, E.K. Field-scale monitoring of nitrate leaching in agriculture: Assessment of three methods. Environ. Monit. Assess. 2022, 194, 4. [Google Scholar] [CrossRef] [PubMed]
- Snow, V.O.; Cichota, R.; McAuliffe, R.J.; Hutchings, N.J.; Vejlin, J. Increasing the spatial scale of process-based agricultural systems models by representing heterogeneity: The case of urine patches in grazed pastures. Environ. Model. Softw. 2017, 90, 89–106. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Khaembah, E.; Brown, H. Testing of OVERSEER N Loss Estimates from Crop Systems; Plant & Food Research Report SPTS No. 14014; Foundation for Arable Research: Christchurch, New Zealand, 2016; Available online: https://assets.ctfassets.net/bo1h2c9cbxaf/2wflP90wzwZNMiGcf6ykm5/7bda1fcdd5ef8b0e699cecfd1ef7dfe3/Crop_Model_Review.pdf (accessed on 20 October 2025).
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Børgesen, C.D.; Pullens, J.W.; Zhao, J.; Blicher-Mathiesen, G.; Sørensen, P.; Olesen, J.E. NLES5—An empirical model for estimating nitrate leaching from the root zone of agricultural land. Eur. J. Agron. 2022, 134, 126465. [Google Scholar] [CrossRef]
- Nonhebel, S. The effects of use of average instead of daily weather data in crop growth simulation models. Agric. Syst. 1994, 44, 377–396. [Google Scholar] [CrossRef]
- Shepherd, M.; Wheeler, D.; Selbie, D.; Buckthought, L.; Freeman, M. Overseer: Accuracy, precision, error and uncertainty. In Accurate and Efficient Use of Nutrients on Farms; Currie, L.D., Christensen, C.L., Eds.; Occasional Report No. 26; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2013; pp. 1–8. Available online: https://www.researchgate.net/profile/Mark-Shepherd-10/publication/275251993_OVERSEER_accuracy_precision_error_and_uncertainty/links/55361a9b0cf20ea35f1102f3/OVERSEER-accuracy-precision-error-and-uncertainty.pdf (accessed on 26 May 2025).








| Scenario | Symbol | Fertilizer Treatment/Simulation Scenarios in Year 1 | Fertilizer Treatment/Simulation Scenarios in Year 2 |
|---|---|---|---|
| 1 | CTRL | No N application | No N application |
| 2 | CRF 1 | N-Control 75 of 79.2 kg N/ha | N-Control 75 of 48.6 kg N/ha |
| 3 | CRF 2 | Two splits of N-Control 75 of 79.2 kg N/ha | Two splits of N-Control 75 of 48.6 kg N/ha |
| 4 | STD 1 | CAN of 81 kg N/ha | CAN of 48.6 kg N/ha |
| 5 | STD 2 | Four splits of CAN 81 kg N/ha | Four splits of CAN 48.6 kg N/ha |
| 6 | EXC 1 | CAN of 162 kg N/ha | CAN of 97.2 kg N/ha |
| 7 | EXC 2 | Two splits of CAN of 162 kg N/ha | Two splits of CAN of 97.2 kg N/ha |
| Input Data | Depth (cm) | Conditions/Values Defined |
|---|---|---|
| Impeded layer depth | - | No barrier (free draining) |
| Drainage class | - | Well-drained |
| Topsoil texture | 0–10 | Loam |
| Bulk density (kg/m3) | 0–10 | 1221 |
| Saturated hydraulic conductivity (mm/day) | 10–60 | 1740 |
| Topsoil C% | 0–10 | 2.1 |
| Sand% | 0–10 | 29.0 |
| Clay% | 0–10 | 21.0 |
| Clay% | 10–60 | 38.5 |
| Olsen P (µg/g) | 10–60 | 39.1 |
| K (g/kg) | 10–60 | 0.37 |
| Ca (g/kg) | 10–60 | 14.7 |
| Mg (g/kg) | 10–60 | 0.9 |
| Na (g/kg) | 10–60 | 0.3 |
| Input Data | Beetroot | Pak Choi |
|---|---|---|
| Maximum rooting depth (cm) | 20 | 20 |
| Date sown | 16 January, year 1 | 14 January, year 2 |
| Date harvested | 27 April, year 1 | 6 April, year 2 |
| Postharvest residue management | Harvest material and residue retained | Harvest material removed; Residues retained |
| Month ryegrass sown | July and September, year 1 | July, year 2 |
| Month ryegrass harvested | - | 1 cut October, year 2 2 cut November, year 2 |
| No. | Input Variables | Simulation Scenarios | |||||||
|---|---|---|---|---|---|---|---|---|---|
| CTRL | CRF 1 | CRF 2 | STD 1 | STD 2 | EXC 1 | EXC 2 | |||
| Beetroot (year 1) | |||||||||
| 1. | Soil residual N (kg N/ha) | 32 | 32 | 32 | 32 | 32 | 32 | 32 | |
| 2. | Fresh yield (t/ha) | 64 | 70 | 69 | 65 | 73 | 70 | 65 | |
| 3. | Month and amount of fertilizer application (kg N/ha) (including Nitrophoska) | 0 | January, 115.2 | January, March 115.2 | January, 117.0 | January, February 117.0 | January, 198.0 | January, 198.0 | |
| 4. | Amount of incorporated harvest material, dry matter (DM) and N concentration | ||||||||
| (a) Beetroots | Amount (kg) | 63,632 | 70,208 | 68,560 | 65,112 | 72,620 | 69,888 | 65,024 | |
| DM% | 18 | 14 | 14 | 16 | 17 | 16 | 15 | ||
| N% | 3.3 | 3.5 | 2.7 | 3.0 | 3.4 | 2.7 | 3.5 | ||
| (b) Beetroot leaves | Amount (kg) | 33,696 | 34,544 | 34,080 | 35,776 | 38,928 | 32,496 | 36,736 | |
| DM% | 11 | 11 | 11 | 11 | 11 | 12 | 11 | ||
| N% | 2.5 | 2.8 | 2.6 | 2.7 | 2.7 | 2.5 | 2.9 | ||
| Pak choi (year 2) | |||||||||
| 1. | Soil residual N (kg N/ha) | 92.2 | 110.4 | 97.4 | 80.9 | 120 | 84.2 | 94.4 | |
| 2. | Fresh yield (t/ha) | 102 | 117 | 112 | 111 | 114 | 130 | 124 | |
| 3. | Amount of harvest material incorporated | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 4. | Month and amount of fertilizer application (kg N/ha) | 0 | January, 48 | January, March 48 | January, 49 | January, March 48 | January, 97 | January, March 98 | |
| Year | Simulation Scenario | Cumulative Water Drainage (mm) | |
|---|---|---|---|
| Measured (Mean ± 95% C.I) | Overseer Predicted | ||
| Year 1 | CTRL | 440 ± 183 | 621 |
| CRF 1 | 425 ± 221 | 621 | |
| CRF 2 | 641 ± 162 | 621 | |
| STD 1 | 490 ± 230 | 621 | |
| STD 2 | 439 ± 140 | 621 † | |
| EXC 1 | 466 ± 109 | 621 † | |
| EXC 2 | 410 ± 255 | 621 | |
| Year 2 | CTRL | 422 ± 368 | 556 |
| CRF 1 | 383 ± 220 | 529 | |
| CRF 2 | 559 ± 147 | 529 | |
| STD 1 | 482 ± 380 | 556 | |
| STD 2 | 522 ± 288 | 556 | |
| EXC 1 | 431 ± 265 | 529 | |
| EXC 2 | 439 ± 290 | 529 | |
| Treatments | Measured Leaching Losses (kg N/ha) | Overseer Predicted Leaching Losses (kg N/ha) |
|---|---|---|
| CTRL | 260.9 ± 78.5 | 266 |
| CRF 1 | 299.2 ± 55.2 | 326 |
| CRF 2 | 404.2 ± 37.5 | 273 |
| STD 1 | 299.6 ± 67.3 | 344 |
| STD 2 | 302.1 ± 50.2 | 392 |
| EXC 1 | 277.0 ± 52.2 | 313 |
| EXC 2 | 286.9 ± 73.2 | 356 |
| Treatments | Measured Leaching Losses (kg N/ha) | Overseer Predicted Leaching Losses (kg N/ha) |
|---|---|---|
| CTRL | 73.4 ± 18.4 | 120 |
| CRF 1 | 76.4 ± 15.6 | 101 |
| CRF 2 | 111.2 ± 22.8 | 97 |
| STD 1 | 96.7 ± 29.4 | 130 |
| STD 2 | 78.3 ± 16.9 | 131 |
| EXC 1 | 93.4 ± 22.1 | 112 |
| EXC 2 | 95.5 ± 22.6 | 71 |
| Year | Simulations | Md | RMSE | Er% |
|---|---|---|---|---|
| Year 1 | CTRL | −5.0 ns | 157.0 | −0.4 |
| CRF 1 | −26.8 ns | 113.7 | −1.8 | |
| CRF 2 | 131.1 * | 151.0 | 6.5 | |
| STD 1 | −13.3 ns | 135.3 | −0.9 | |
| STD 2 | −53.8 ns | 114.0 | −3.5 | |
| EXC 1 | −66.9 ns | 124.1 | −4.8 | |
| EXC 2 | −105 ns | 180.3 | −7.3 | |
| Year 2 | CTRL | −46.6 ns | 59.4 | −12.7 |
| CRF 1 | 24.6 ns | 39.8 | −6.4 | |
| CRF 2 | 14.2 ns | 47.8 | 2.5 | |
| STD 1 | −33.2 ns | 67.6 | −6.8 | |
| STD 2 | −52.7 * | 62.6 | −13.4 | |
| EXC 1 | −18.5 ns | 48.0 | −3.9 | |
| EXC 2 | 24.5 ns | 51.5 | 5.1 |
| Statistical Parameter | NO3− Leaching Loss (kgN/ha) | p Value |
|---|---|---|
| Correlation coefficient (r) | 0.89 | <0.0001 |
| Slope (b) | 0.89 | <0.0001 |
| Intercept (a) | 39.4 | 0.21 |
| Scenario | Applied N (kg/ha) | Predicted Uptake (kg/ha) | Uptake Above CTRL (kg/ha) | Predicted Leaching (kg/ha) | † Surplus N (kg/ha) |
|---|---|---|---|---|---|
| Year 1 | |||||
| CTRL | 0 | 290 | – | 266 | – |
| CRF1 | 79.2 | 303 | 13 | 326 | 66.2 |
| CRF2 | 79.2 | 300 | 10 | 273 | 69.2 |
| STD1 | 81 | 293 | 3 | 344 | 78 |
| STD2 | 81 | 308 | 18 | 392 | 63 |
| EXC1 | 162 | 303 | 13 | 313 | 149 |
| EXC2 | 162 | 292 | 2 | 356 | 160 |
| Year 2 | |||||
| CTRL | 0 | 473 | – | 120 | – |
| CRF1 | 48.6 | 520 | 47 | 101 | 1.6 |
| CRF2 | 48.6 | 504 | 31 | 97 | 17.6 |
| STD1 | 48.6 | 503 | 30 | 130 | 18.6 |
| STD2 | 48.6 | 513 | 40 | 131 | 8.6 |
| EXC1 | 97.2 | 562 | 89 | 112 | 8.2 |
| EXC2 | 97.2 | 387 | −86 | 71 | 183.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bawatharani, R.; Grafton, M.; Jeyakumar, P. Validation of the Overseer Cropping Model for Estimating Nitrate Leaching Losses in Precision Agriculture. Nitrogen 2026, 7, 17. https://doi.org/10.3390/nitrogen7010017
Bawatharani R, Grafton M, Jeyakumar P. Validation of the Overseer Cropping Model for Estimating Nitrate Leaching Losses in Precision Agriculture. Nitrogen. 2026; 7(1):17. https://doi.org/10.3390/nitrogen7010017
Chicago/Turabian StyleBawatharani, Raveendrakumaran, Miles Grafton, and Paramsothy Jeyakumar. 2026. "Validation of the Overseer Cropping Model for Estimating Nitrate Leaching Losses in Precision Agriculture" Nitrogen 7, no. 1: 17. https://doi.org/10.3390/nitrogen7010017
APA StyleBawatharani, R., Grafton, M., & Jeyakumar, P. (2026). Validation of the Overseer Cropping Model for Estimating Nitrate Leaching Losses in Precision Agriculture. Nitrogen, 7(1), 17. https://doi.org/10.3390/nitrogen7010017

