Genetic Structure of Introduced Plasmodium vivax Malaria Isolates in Greece, 2015–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Sample Collection and DNA Extraction
2.2. Genotypic Analysis
2.3. Ethics Statement
3. Results
Genotyping Results per Region
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Malaria Report. 2023. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (accessed on 7 February 2024).
- Battle, K.E.; Lucas, T.C.D.; Nguyen, M.; Howes, R.E.; Nandi, A.K.; Twohig, K.A.; Pfeffer, D.A.; Cameron, E.; Rao, P.C.; Casey, D.; et al. Mapping the Global Endemicity and Clinical Burden of Plasmodium Vivax, 2000-17: A Spatial and Temporal Modelling Study. Lancet 2019, 394, 332–343. [Google Scholar] [CrossRef]
- World Health Organization. Global Technical Strategy for Malaria 2016–2030; 2021 Update; World Health Organization: Geneva, Switzerland, 2021.
- World Malaria Report. 2022. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (accessed on 26 June 2023).
- Angrisano, F.; Robinson, L.J. Plasmodium Vivax—How Hidden Reservoirs Hinder Global Malaria Elimination. Parasitol. Int. 2022, 87, 102526. [Google Scholar] [CrossRef] [PubMed]
- White, N.J. Determinants of Relapse Periodicity in Plasmodium vivax Malaria. Malar. J. 2011, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.H.; Mueller, I. The Biology of Plasmodium Vivax. Cold Spring Harb. Perspect. Med. 2017, 7, a025585. [Google Scholar] [CrossRef] [PubMed]
- Price, R.N.; von Seidlein, L.; Valecha, N.; Nosten, F.; Baird, J.K.; White, N.J. Global Extent of Chloroquine-Resistant Plasmodium Vivax: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2014, 14, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Rougeron, V.; Elguero, E.; Arnathau, C.; Acuña Hidalgo, B.; Durand, P.; Houze, S.; Berry, A.; Zakeri, S.; Haque, R.; Shafiul Alam, M.; et al. Human Plasmodium vivax Diversity, Population Structure and Evolutionary Origin. PLoS Negl. Trop. Dis. 2020, 14, e0008072. [Google Scholar] [CrossRef]
- Imwong, M.; Nair, S.; Pukrittayakamee, S.; Sudimack, D.; Williams, J.T.; Mayxay, M.; Newton, P.N.; Kim, J.R.; Nandy, A.; Osorio, L.; et al. Contrasting Genetic Structure in Plasmodium vivax Populations from Asia and South America. Int. J. Parasitol. 2007, 37, 1013–1022. [Google Scholar] [CrossRef]
- Arnott, A.; Barry, A.E.; Reeder, J.C. Understanding the Population Genetics of Plasmodium vivax Is Essential for Malaria Control and Elimination. Malar. J. 2012, 11, 14. [Google Scholar] [CrossRef]
- Barry, A.E.; Waltmann, A.; Koepfli, C.; Barnadas, C.; Mueller, I. Uncovering the Transmission Dynamics of Plasmodium vivax Using Population Genetics. Pathog. Glob. Health 2015, 109, 142–152. [Google Scholar] [CrossRef]
- Spanakos, G.; Snounou, G.; Pervanidou, D.; Alifrangis, M.; Rosanas-Urgell, A.; Baka, A.; Tseroni, M.; Vakali, A.; Vassalou, E.; Patsoula, E.; et al. Genetic Spatiotemporal Anatomy of Plasmodium vivax Malaria Episodes in Greece, 2009–2013. Emerg. Infect. Dis. 2018, 24, 541–548. [Google Scholar] [CrossRef]
- Ferreira, M.U.; Karunaweera, N.D.; da Silva-Nunes, M.; da Silva, N.S.; Wirth, D.F.; Hartl, D.L. Population Structure and Transmission Dynamics of Plasmodium vivax in Rural Amazonia. J. Infect. Dis. 2007, 195, 1218–1226. [Google Scholar] [CrossRef]
- Karunaweera, N.D.; Ferreira, M.U.; Hartl, D.L.; Wirth, D.F. Fourteen Polymorphic Microsatellite DNA Markers for the Human Malaria Parasite Plasmodium vivax. Mol. Ecol. Notes 2006, 7, 172–175. [Google Scholar] [CrossRef]
- Bruce, M.C.; Galinski, M.R.; Barnwell, J.W.; Snounou, G.; Day, K.P. Polymorphism at the Merozoite Surface Protein-3alpha Locus of Plasmodium Vivax: Global and Local Diversity. Am. J. Trop. Med. Hyg. 1999, 61, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.N.; Khan, A.; Khan, S.; Ayaz, S.; Attaullah, S.; Khan, J.; Khan, M.A.; Ali, I.; Shah, A.H. PCR/RFLP-Based Analysis of Genetically Distinct Plasmodium vivax Population of Pvmsp-3α and Pvmsp-3β Genes in Pakistan. Malar. J. 2014, 13, 355. [Google Scholar] [CrossRef] [PubMed]
- Spanakos, G.; Alifrangis, M.; Schousboe, M.L.; Patsoula, E.; Tegos, N.; Hansson, H.H.; Bygbjerg, I.C.; Vakalis, N.C.; Tseroni, M.; Kremastinou, J.; et al. Genotyping Plasmodium vivax Isolates from the 2011 Outbreak in Greece. Malar. J. 2013, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Chenet, S.M.; Schneider, K.A.; Villegas, L.; Escalante, A.A. Local Population Structure of Plasmodium: Impact on Malaria Control and Elimination. Malar. J. 2012, 11, 412. [Google Scholar] [CrossRef] [PubMed]
- Sutton, P.L. A Call to Arms: On Refining Plasmodium vivax Microsatellite Marker Panels for Comparing Global Diversity. Malar. J. 2013, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Vakali, A.; Patsoula, E.; Spanakos, G.; Danis, K.; Vassalou, E.; Tegos, N.; Economopoulou, A.; Baka, A.; Pavli, A.; Koutis, C.; et al. Malaria in Greece, 1975 to 2010. Eurosurveillance 2012, 17, 20322. [Google Scholar] [CrossRef] [PubMed]
- Annual Epidemiological Data—NPHO. Available online: https://eody.gov.gr/en/epidemiological-statistical-data/annual-epidemiological-data/ (accessed on 5 September 2023).
- Tseroni, M.; Baka, A.; Kapizioni, C.; Snounou, G.; Tsiodras, S.; Charvalakou, M.; Georgitsou, M.; Panoutsakou, M.; Psinaki, I.; Tsoromokou, M.; et al. Prevention of Malaria Resurgence in Greece through the Association of Mass Drug Administration (MDA) to Immigrants from Malaria-Endemic Regions and Standard Control Measures. PLoS Negl. Trop. Dis. 2015, 9, e0004215. [Google Scholar] [CrossRef]
- NPHO Malaria. Available online: https://eody.gov.gr/en/disease/malaria/ (accessed on 7 April 2024).
- Patsoula, E.; Spanakos, G.; Sofianatou, D.; Parara, M.; Vakalis, N.C. A Single-Step, PCR-Based Method for the Detection and Differentiation of Plasmodium vivax and P. falciparum. Ann. Trop. Med. Parasitol. 2003, 97, 15–21. [Google Scholar] [CrossRef]
- Kaul, A.; Bali, P.; Anwar, S.; Sharma, A.K.; Gupta, B.K.; Singh, O.P.; Adak, T.; Sohail, M. Genetic Diversity and Allelic Variation in MSP3α Gene of Paired Clinical Plasmodium vivax Isolates from Delhi, India. J. Infect. Public Health 2019, 12, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Rayner, J.C.; Corredor, V.; Feldman, D.; Ingravallo, P.; Iderabdullah, F.; Galinski, M.R.; Barnwell, J.W. Extensive Polymorphism in the Plasmodium vivax Merozoite Surface Coat Protein MSP-3alpha Is Limited to Specific Domains. Parasitology 2002, 125, 393–405. [Google Scholar] [CrossRef]
- Cui, L.; Mascorro, C.N.; Fan, Q.; Rzomp, K.A.; Khuntirat, B.; Zhou, G.; Chen, H.; Yan, G.; Sattabongkot, J. Genetic Diversity and Multiple Infections of Plasmodium vivax Malaria in Western Thailand. Am. J. Trop. Med. Hyg. 2003, 68, 613–619. [Google Scholar] [CrossRef]
- Thanapongpichat, S.; Khammanee, T.; Sawangjaroen, N.; Buncherd, H.; Tun, A.W. Genetic Diversity of Plasmodium vivax in Clinical Isolates from Southern Thailand Using PvMSP1, PvMSP3 (PvMSP3α, PvMSP3β) Genes and Eight Microsatellite Markers. Korean J. Parasitol. 2019, 57, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, S.; Safi, N.; Afsharpad, M.; Butt, W.; Ghasemi, F.; Mehrizi, A.A.; Atta, H.; Zamani, G.; Djadid, N.D. Genetic Structure of Plasmodium vivax Isolates from Two Malaria Endemic Areas in Afghanistan. Acta Trop. 2010, 113, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, S.; Raeisi, A.; Afsharpad, M.; Kakar, Q.; Ghasemi, F.; Atta, H.; Zamani, G.; Memon, M.S.; Salehi, M.; Djadid, N.D. Molecular Characterization of Plasmodium vivax Clinical Isolates in Pakistan and Iran Using Pvmsp-1, Pvmsp-3alpha and Pvcsp Genes as Molecular Markers. Parasitol. Int. 2010, 59, 15–21. [Google Scholar] [CrossRef]
- Khatoon, L.; Baliraine, F.N.; Bonizzoni, M.; Malik, S.A.; Yan, G. Genetic Structure of Plasmodium vivax and Plasmodium falciparum in the Bannu District of Pakistan. Malar. J. 2010, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Orjuela-Sánchez, P.; Sá, J.M.; Brandi, M.C.C.; Rodrigues, P.T.; Bastos, M.S.; Amaratunga, C.; Duong, S.; Fairhurst, R.M.; Ferreira, M.U. Higher Microsatellite Diversity in Plasmodium vivax than in Sympatric Plasmodium falciparum Populations in Pursat, Western Cambodia. Exp. Parasitol. 2013, 134, 318–326. [Google Scholar] [CrossRef]
- Gunawardena, S.; Karunaweera, N.D.; Ferreira, M.U.; Phone-Kyaw, M.; Pollack, R.J.; Alifrangis, M.; Rajakaruna, R.S.; Konradsen, F.; Amerasinghe, P.H.; Schousboe, M.L.; et al. Geographic Structure of Plasmodium Vivax: Microsatellite Analysis of Parasite Populations from Sri Lanka, Myanmar, and Ethiopia. Am. J. Trop. Med. Hyg. 2010, 82, 235–242. [Google Scholar] [CrossRef]
- Zakeri, S.; Barjesteh, H.; Djadid, N.D. Merozoite Surface Protein-3alpha Is a Reliable Marker for Population Genetic Analysis of Plasmodium Vivax. Malar. J. 2006, 5, 53. [Google Scholar] [CrossRef]
- Salla, L.C.; Rodrigues, P.T.; Corder, R.M.; Johansen, I.C.; Ladeia-Andrade, S.; Ferreira, M.U. Molecular Evidence of Sustained Urban Malaria Transmission in Amazonian Brazil, 2014–2015. Epidemiol. Infect. 2020, 148, e47. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Kim, S.-H.; Jo, S.-N.; Gwack, J.; Youn, S.-K.; Jang, J.-Y. The Long and Short Incubation Periods of Plasmodium vivax Malaria in Korea: The Characteristics and Relating Factors. Infect. Chemother. 2013, 45, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Brasil, P.; de Pina Costa, A.; Pedro, R.S.; da Silveira Bressan, C.; da Silva, S.; Tauil, P.L.; Daniel-Ribeiro, C.T. Unexpectedly Long Incubation Period of Plasmodium vivax Malaria, in the Absence of Chemoprophylaxis, in Patients Diagnosed Outside the Transmission Area in Brazil. Malar. J. 2011, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Battle, K.E.; Karhunen, M.S.; Bhatt, S.; Gething, P.W.; Howes, R.E.; Golding, N.; Van Boeckel, T.P.; Messina, J.P.; Shanks, G.D.; Smith, D.L.; et al. Geographical Variation in Plasmodium vivax Relapse. Malar. J. 2014, 13, 144. [Google Scholar] [CrossRef]
Region | Regional Unit | Locally Acquired/Introduced (LA/I) P. Vivax Cases by Year of Infection and Blood Samples Genotyped from Imported (IMP) and locally Acquired/Introduced (LA/I) Cases | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | ||||||||||||
Cases | Samples | Cases | Samples | Cases | Samples | Cases | Samples | Cases | Samples | |||||||
LA/I | LA/I | IMP | LA/I | LA/I | IMP | LA/I | LA/I | IMP | LA/I | LA/I | IMP | LA/I | LA/I | IMP | ||
Peloponnese | Laconia | 1 | 1 | 7 | 0 | 0 | 15 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
Argolis | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Attica | East Attica | 2 | 2 | 5 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
Central Greece | Voiotia | 1 | 0 a | 0 | 0 | 0 | 8 | 1 | 1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
Euboea | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Phtiotis | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Thessaly | Karditsa | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Larissa | 3 | 3 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Trikala | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | |
Sporades | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Eastern Macedonia and Thrace | Evros | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 |
Central Macedonia | Pieria | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
Thessaloniki | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 8 | 7 a | 0 | 0 | 0 | 0 | |
Western Greece | Achaea | 0 | 0 | 0 | 1 | 1 | 4 | 1 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 |
Ilia | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | |
Aitoloakarnania | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Ionian islands | Kefalonia | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Crete | Lasithi | 0 | 0 | 2 | 0 | 0 | 6 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 8 | 7 | 14 | 6 | 6 | 42 | 6 | 6 | 36 | 11 | 10 | 1 | 1 | 1 | 1 |
Locus | Chromosome Location | Allele Size, bp | Number of Alleles/Locus | ||||
---|---|---|---|---|---|---|---|
Total | Greece’s Residents | Migrants | Total | Greece’s Residents | Migrants | ||
Pv1.501 | 1 | 82–207 | 100–185 | 82–207 | 31 | 10 | 29 |
Pv3.502 | 3 | 89–210 | 145–210 | 89–210 | 16 | 6 | 16 |
MS1 | 3 | 155–283 | 229–246 | 155–283 | 17 | 7 | 16 |
MS5 | 6 | 112–187 | 167–184 | 112–187 | 19 | 7 | 17 |
MS7 | 12 | 137–160 | 139–160 | 137–159 | 17 | 8 | 16 |
MS8 | 12 | 216–358 | 225–358 | 216–334 | 52 | 18 | 43 |
MS12 | 5 | 169–262 | 209–262 | 169–237 | 27 | 15 | 23 |
MS20 | 10 | 168–227 | 171–215 | 168–227 | 39 | 15 | 37 |
Date of Symptoms Onset | Year of Exposure | Region | Regional Unit | Cluster | Introduced a | Pv1.501 | Pv3.502 | MS1 | MS5 | MS7 | MS8 | MS12 | MS20 | Pvmsp-3a | Haplotypes | Family |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 September 2015 | 2015 | Attica | East Attica | village 1 | Y | 114 | 186 | 246 | 167 | 147 | 290 | 224 | 195 | A | Att5 | 1 |
30 September 2015 | 2015 | Attica | East Attica | village 1 | Y | 114 | 186 | 246 | 167 | 145 | 290 | 215 | 195 | A | Att6 | |
8 September2015 | 2015 | Thessaly | Larissa | village 2 | Y | 121 | 162 | 229 | 172 | 145 | 247 | 260 | 180 | B | Lar1 | 2 |
11 September 2016 | 2015 | Thessaly | Larissa | village 2 | Y | 121 | 162 | 229 | 172 | 145 | 247 | 260 | 180 | B | Lar1 | |
27 October 2016 | 2015 | Thessaly | Larissa | village 2 | Y | 121 | 162 | 231 | 172 | 145 | 247 | 262 | 180 | B | Lar2 | |
3 July 2016 | 2016 | Western Greece | Achaea | village 3 | Y | 100 | 145 | 237 | 172 | 155 | 248 | 221 | 171 | A | Ach1 | 3 |
2 May 2017 | 2017 | Western Greece | Achaea | village 3 | Y | 100 | 145 | 237 | 172 | 155 | 250 | 221 | 172 | A | Ach6 | |
18 July 2017 | 2017 | Western Greece | Ilia | village 4 | Y | 121 | 154 | 234 | 168 | 144 | 266 | 223 | 209 | A | Il4 | 4 |
4 May 2017 | 2017 | Western Greece | Ilia | village 4 | Y | 121 | 154 | 234 | 168 | 144 | 266 | 224 | 210 | A | Il6 | |
15 July 2017 | 2017 | Central Greece | Voiotia | village 5 | Y | 156 | 210 | 237 | 168 | x b | x b | 212 | 177 | B | Voi22-1 | 5 |
14 July 2017 | 2017 | Central Greece | Voiotia | village 5 | N | 156 | 210 | 237 | 168 | 148 | 249 | 212 | 177 | B | Voi22 | |
12–15 September 2018 | 2018 | Central Macedonia | Thessaloniki | village 6 | Y | 100 | 145 | 240 | 169 | 145 | 358 | 212 | 182 | B | Thess3 | 6 |
17 September 2018 | 2018 | Central Macedonia | Thessaloniki | village 6 | Y | 100 | 145 | 240 | 169 | 145 | 357 | 212 | 182 | B | Thess3-1 | |
26 September 2018 | 2018 | Central Macedonia | Thessaloniki | village 6 | Y | 100 | 145 | 240 | 169 | 145 | 358 | 212 | 182 | B | Thess3 | |
27–28 September 2018 | 2018 | Central Macedonia | Thessaloniki | village 6 | Y | 100 | 145 | 240 | 169 | 145 | 358 | 212 | 182 | B | Thess3 | |
2 October 2018 | 2018 | Central Macedonia | Thessaloniki | village 6 | Y | 100 | 145 | 240 | 169 | 145 | 358 | 212 | 182 | B | Thess3 | |
3–5 October 2018 | 2018 | Central Macedonia | Thessaloniki | village 6 | Y | 100 | 145 | 240 | 169 | 145 | 358 | 212 | 182 | B | Thess3 | |
5 October 2018 | 2018 | Central Macedonia | Thessaloniki | village 6 | Y | 100 | 145 | 240 | 169 | 145 | 358 | x b | x b | B | Thess4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spiliopoulou, I.; Pervanidou, D.; Tegos, N.; Tseroni, M.; Baka, A.; Vakali, A.; Kefaloudi, C.-N.; Papavasilopoulos, V.; Mpimpa, A.; Patsoula, E. Genetic Structure of Introduced Plasmodium vivax Malaria Isolates in Greece, 2015–2019. Trop. Med. Infect. Dis. 2024, 9, 102. https://doi.org/10.3390/tropicalmed9050102
Spiliopoulou I, Pervanidou D, Tegos N, Tseroni M, Baka A, Vakali A, Kefaloudi C-N, Papavasilopoulos V, Mpimpa A, Patsoula E. Genetic Structure of Introduced Plasmodium vivax Malaria Isolates in Greece, 2015–2019. Tropical Medicine and Infectious Disease. 2024; 9(5):102. https://doi.org/10.3390/tropicalmed9050102
Chicago/Turabian StyleSpiliopoulou, Ioanna, Danai Pervanidou, Nikolaos Tegos, Maria Tseroni, Agoritsa Baka, Annita Vakali, Chrisovaladou-Niki Kefaloudi, Vasilios Papavasilopoulos, Anastasia Mpimpa, and Eleni Patsoula. 2024. "Genetic Structure of Introduced Plasmodium vivax Malaria Isolates in Greece, 2015–2019" Tropical Medicine and Infectious Disease 9, no. 5: 102. https://doi.org/10.3390/tropicalmed9050102
APA StyleSpiliopoulou, I., Pervanidou, D., Tegos, N., Tseroni, M., Baka, A., Vakali, A., Kefaloudi, C. -N., Papavasilopoulos, V., Mpimpa, A., & Patsoula, E. (2024). Genetic Structure of Introduced Plasmodium vivax Malaria Isolates in Greece, 2015–2019. Tropical Medicine and Infectious Disease, 9(5), 102. https://doi.org/10.3390/tropicalmed9050102