Detecting Enteric Pathogens in Low-Risk Drinking Water in Dhaka, Bangladesh: An Assessment of the WHO Water Safety Categories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection and Processing
2.3. DNA Extraction and Detection of Virulence Gene
2.4. Data Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- Troeger, C.; Blacker, B.F.; Khalil, I.A.; Rao, P.C.; Cao, S.; Zimsen, S.R.; Albertson, S.B.; Stanaway, J.D.; Deshpande, A.; Abebe, Z. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1211–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbafati, C.; Machado, D.; Cislaghi, B.; Salman, O.; Karanikolos, M.; McKee, M.; Abbas, K.; Brady, O.; Larson, H.; Trias-Llimós, S. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar]
- USEPA. Final CCL 3 Microbes: EPA Screening to the PCCL. Available online: https://www.epa.gov/sites/default/files/2014-05/documents/final-ccl-microbe-screening-8-26-09.pdf (accessed on 9 May 2023).
- Ashbolt, N.J. Microbial Contamination of Drinking Water and Human Health from Community Water Systems. Curr. Environ. Health Rep. 2015, 2, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lastovica, A.J.; Allos, B.M. Clinical significance of Campylobacter and related species other than Campylobacter jejuni and Campylobacter coli. In Campylobacter; ASM Press: Washington, DC, USA, 2008; pp. 123–149. [Google Scholar]
- Connerton, I.; Connerton, P. Campylobacter foodborne disease. In Foodborne Diseases; Elsevier: Amsterdam, The Netherlands, 2017; pp. 209–221. [Google Scholar]
- Franco-Paredes, C.; Khan, M.I.; Gonzalez-Diaz, E.; Santos-Preciado, J.I.; Rodriguez-Morales, A.J.; Gotuzzo, E. Enteric Fever: A Slow Response to an Old Plague. PLoS Negl. Trop. Dis. 2016, 10, e0004597. [Google Scholar] [CrossRef] [Green Version]
- Wagner, E.G.; Lanoix, J.N.; World Health Organization. Excreta Disposal for Rural Areas and Small Communities; World Health Organization: Geneva, Switzerland, 1958. [Google Scholar]
- Hossain, Z.Z.; Sultana, R.; Begum, A.; Jensen, P.K.M. Investigation of the Domestic Reservoirs of Diarrheagenic Escherichia coli in Diarrhea Case Households of Urban Bangladesh. Curr. Microbiol. 2021, 78, 2534–2547. [Google Scholar] [CrossRef] [PubMed]
- Farhana, I.; Hossain, Z.Z.; Tulsiani, S.M.; Jensen, P.K.M.; Begum, A. Survival of Vibrio cholerae O1 on fomites. World J. Microbiol. Biotechnol. 2016, 32, 1–8. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; Volume 216, pp. 303–304. [Google Scholar]
- Jensen, P.K.M.; Hossain, Z.Z.; Sultana, R.; Ferdous, J.; Almeida, S.; Begum, A. Introduction of the Personal Domain in Water Sanitation and Hygiene (WASH), a New Approach to Identify Missing Health Impacts. Trop. Med. Infect. Dis. 2023, 8, 252. [Google Scholar] [CrossRef]
- Azman, A.S.; Lessler, J.; Satter, S.M.; McKay, M.V.; Khan, A.; Ahmed, D.; Gurley, E.S. Tracking Cholera through Surveillance of Oral Rehydration Solution Sales at Pharmacies: Insights from Urban Bangladesh. PLoS Negl. Trop. Dis. 2015, 9, e0004230. [Google Scholar] [CrossRef]
- Gurley, E.S.; Hossain, M.J.; Paul, R.C.; Sazzad, H.; Islam, M.S.; Parveen, S.; Faruque, L.I.; Husain, M.; Ara, K.; Jahan, Y.; et al. Outbreak of Hepatitis E in Urban Bangladesh Resulting in Maternal and Perinatal Mortality. Clin. Infect. Dis. 2014, 59, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Sultana, R.; Tamason, C.C.; Carstensen, L.S.; Ferdous, J.; Hossain, Z.Z.; Begum, A.; Jensen, P.K.M. Water usage, hygiene and diarrhea in low-income urban communities—A mixed method prospective longitudinal study. MethodsX 2019, 6, 2822–2837. [Google Scholar] [CrossRef]
- CUS. National Institute of Population Research and Training (NIPORT) and MEASURE Evaluation. 2006. Slums of Urban Bangladesh: Mapping and Census, 2005. Available online: https://www.measureevaluation.org/resources/publications/tr-06-35.html (accessed on 9 June 2023).
- Ferdous, J.; Sultana, R.; Bin Rashid, R.; Saima, S.; Begum, A.; Jensen, P.K.M. Comparative Assessment of Fecal Contamination in Piped-to-Plot Communal Source and Point-of-Drinking Water. Water 2021, 13, 1139. [Google Scholar] [CrossRef]
- Ferdous, J.; Sultana, R.; Rashid, R.B.; Tasnimuzzaman, M.; Nordland, A.; Begum, A.; Jensen, P.K. A Comparative Analysis of Vibrio cholerae Contamination in Point-of-Drinking and Source Water in a Low-Income Urban Community, Bangladesh. Front. Microbiol. 2018, 9, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency. Method 1603: Escherichia coli (E. coli) in Water by Membrane Filtration Using Modified Membrane-Thermotolerant Escherichia coli Agar (Modified mTEC). Available online: https://www.epa.gov/sites/production/files/2015-08/documents/method_1603_2009.pdf (accessed on 27 August 2022).
- Hossain, Z.Z.; Ferdous, J.; Tulsiani, S.M.; Jensen, P.K.M.; Begum, A. Quantitative Analysis of Nucleic Acid Extraction Methods for Vibrio cholerae Using Real-time PCR and Conventional PCR. Mymensingh Med. J. MMJ 2018, 27, 327–335. [Google Scholar]
- Svenungsson, B.; Lagergren, Å.; Ekwall, E.; Evengård, B.; Hedlund, K.O.; Kärnell, A.; Löfdahl, S.; Svensson, L.; Weintraub, A. Enteropathogens in adult patients with diarrhea and healthy control subjects: A 1-year prospective study in a Swedish clinic for infectious diseases. Clin. Infect. Dis. 2000, 30, 770–778. [Google Scholar]
- Pollard, D.; Johnson, W.; Lior, H.; Tyler, S.; Rozee, K. Rapid and specific detection of verotoxin genes in Escherichia coli by the polymerase chain reaction. J. Clin. Microbiol. 1990, 28, 540–545. [Google Scholar]
- Tornieporth, N.G.; John, J.; Salgado, K.; de Jesus, P.; Latham, E.; Melo, M.; Gunzburg, S.T.; Riley, L.W. Differentiation of pathogenic Escherichia coli strains in Brazilian children by PCR. J. Clin. Microbiol. 1995, 33, 1371–1374. [Google Scholar]
- Schmidt, H.; Knop, C.; Franke, S.; Aleksic, S.; Heesemann, J.; Karch, H. Development of PCR for screening of enteroaggregative Escherichia coli. J. Clin. Microbiol. 1995, 33, 701–705. [Google Scholar]
- Nandi, B.; Nandy, R.K.; Mukhopadhyay, S.; Nair, G.B.; Shimada, T.; Ghose, A.C. Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. J. Clin. Microbiol. 2000, 38, 4145–4151. [Google Scholar]
- Fratamico, P.M. Comparison of culture, polymerase chain reaction (PCR), TaqMan Salmonella, and Transia Card Salmonella assays for detection of Salmonella spp. in naturally-contaminated ground chicken, ground turkey, and ground beef. Mol. Cell. Probes 2003, 17, 215–221. [Google Scholar]
- Wang, S.J.; Yeh, D.B. Designing of polymerase chain reaction primers for the detection of Salmonella enteritidis in foods and faecal samples. Lett. Appl. Microbiol. 2002, 34, 422–427. [Google Scholar]
- Paião, F.; Arisitides, L.; Murate, L.; Vilas-Bôas, G.; Vilas-Boas, L.; Shimokomaki, M. Detection of Salmonella spp, Salmonella Enteritidis and Typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay. Braz. J. Microbiol. 2013, 44, 37–42. [Google Scholar]
- Linton, D.; Lawson, A.; Owen, R.; Stanley, J. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J. Clin. Microbiol. 1997, 35, 2568–2572. [Google Scholar]
- Wang, R.F.; Slavik, M.F.; Cao, W.W. A Rapid PCR Method for Direct Detection of Low Numbers of Campylobacter Jejuni. J. Rapid Methods Autom. Microbiol. 1992, 1, 101–108. [Google Scholar]
- Ferdous, J.; Rashid, R.B.; Sultana, R.; Saima, S.; Jahan Prima, M.; Begum, A.; Mackie Jensen, P.K. Is It Human or Animal? The Origin of Pathogenic E. coli in the Drinking Water of a Low-Income Urban Community in Bangladesh. Trop. Med. Infect. Dis. 2021, 6, 181. [Google Scholar] [CrossRef] [PubMed]
- Wardrop, N.A.; Hill, A.G.; Dzodzomenyo, M.; Aryeetey, G.; Wright, J.A. Livestock ownership and microbial contamination of drinking-water: Evidence from nationally representative household surveys in Ghana, Nepal and Bangladesh. Int. J. Hyg. Environ. Health 2018, 221, 33–40. [Google Scholar] [CrossRef]
- Heitzinger, K.; Rocha, C.A.; Quick, R.E.; Montano, S.M.; Tilley, D.H., Jr.; Mock, C.N.; Carrasco, A.J.; Cabrera, R.M.; Hawes, S.E. “Improved” but not necessarily safe: An assessment of fecal contamination of household drinking water in rural Peru. Am. J. Trop. Med. Hyg. 2015, 93, 501. [Google Scholar] [CrossRef] [Green Version]
- Hossain, Z.; Farhana, I.; Sultana, R.; Begum, A.; Jensen, P. Fecal contamination hotspots in low-income households in Bangladesh. Int. J. Infect. Dis. 2018, 73, 55. [Google Scholar] [CrossRef]
- Gil, A.I.; Lanata, C.F.; Hartinger, S.M.; Mäusezahl, D.; Padilla, B.; Ochoa, T.J.; Lozada, M.; Pineda, I.; Verastegui, H. Fecal contamination of food, water, hands, and kitchen utensils at the household level in rural areas of Peru. J. Environ. Health 2014, 76, 102–107. [Google Scholar] [PubMed]
- Capone, D.; Adriano, Z.; Berendes, D.; Cumming, O.; Dreibelbis, R.; Holcomb, D.A.; Knee, J.; Ross, I.; Brown, J. A localized sanitation status index as a proxy for fecal contamination in urban Maputo, Mozambique. PLoS ONE 2019, 14, e0224333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, G.E.; Bates, S.T.; Caporaso, J.G.; Lauber, C.L.; Leff, J.W.; Knight, R.; Fierer, N. Diversity, distribution and sources of bacteria in residential kitchens. Environ. Microbiol. 2013, 15, 588–596. [Google Scholar] [CrossRef]
- Trevett, A.F.; Carter, R.C.; Tyrrel, S. The importance of domestic water quality management in the context of faecal–oral disease transmission. J. Water Health 2005, 3, 259–270. [Google Scholar] [CrossRef]
- Croxen, M.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Genet. 2009, 8, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Paton, J.C.; Paton, A.W. Pathogenesis and Diagnosis of Shiga Toxin-Producing Escherichia coli Infections. Clin. Microbiol. Rev. 1998, 11, 450–479. [Google Scholar] [CrossRef] [Green Version]
- Welinder-Olsson, C.; Kaijser, B. Enterohemorrhagic Escherichia coli (EHEC). Scand. J. Infect. Dis. 2005, 37, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Crump, J.A.; Bopp, C.A.; Greene, K.D.; Kubota, K.A.; Middendorf, R.L.; Wells, J.G.; Mintz, E.D. Toxigenic Vibrio cholerae serogroup O141–associated cholera-like diarrhea and bloodstream infection in the United States. J. Infect. Dis. 2003, 187, 866–868. [Google Scholar] [CrossRef] [Green Version]
- Dutta, D.; Chowdhury, G.; Pazhani, G.P.; Guin, S.; Dutta, S.; Ghosh, S.; Rajendran, K.; Nandy, R.K.; Mukhopadhyay, A.K.; Bhattacharya, M.K.; et al. Vibrio cholerae Non-O1, Non-O139 Serogroups and Cholera-like Diarrhea, Kolkata, India. Emerg. Infect. Dis. 2013, 19, 464–467. [Google Scholar] [CrossRef]
- Voelker, R. Contaminated Water Is Suspected in Massive Salmonella Outbreak. JAMA 2021, 325, 2336. [Google Scholar] [CrossRef]
- Hyllestad, S.; Iversen, A.; MacDonald, E.; Amato, E.; Borge, B.S.; Bøe, A.; Sandvin, A.; Brandal, L.T.; Lyngstad, T.M.; Naseer, U.; et al. Large waterborne Campylobacter outbreak: Use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. Eurosurveillance 2020, 25, 2000011. [Google Scholar] [CrossRef]
- Matthews, K.R.; Kniel, K.E.; Montville, T.J. Food Microbiology: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Tribble, D.R.; Baqar, S.; Scott, D.A.; Oplinger, M.L.; Trespalacios, F.; Rollins, D.; Walker, R.I.; Clements, J.D.; Walz, S.; Gibbs, P.; et al. Assessment of the Duration of Protection in Campylobacter jejuni Experimental Infection in Humans. Infect. Immun. 2010, 78, 1750–1759. [Google Scholar] [CrossRef] [Green Version]
- Moe, C.L.; Sobsey, M.D.; Samsa, G.P.; Mesolo, V. Bacterial indicators of risk of diarrhoeal disease from drinking-water in the Philippines. Bull. World Health Organ. 1991, 69, 305–317. [Google Scholar]
- Van der Hoek, W.; Konradsen, F.; Ensink, J.H.; Mudasser, M.; Jensen, P.K. Irrigation water as a source of drinking water: Is safe use possible? Trop. Med. Int. Health 2001, 6, 46–54. [Google Scholar] [CrossRef]
- Luby, S.P.; Halder, A.K.; Huda, T.; Unicomb, L.; Islam, M.S.; Arnold, B.F.; Johnston, R.B. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea. Am. J. Trop. Med. Hyg. 2015, 93, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Lothigius, Å.; Sjöling, Å.; Svennerholm, A.M.; Bölin, I. Survival and gene expression of enterotoxigenic Escherichia coli during long-term incubation in sea water and freshwater. J. Appl. Microbiol. 2010, 108, 1441–1449. [Google Scholar] [CrossRef] [Green Version]
- Aurass, P.; Prager, R.; Flieger, A. EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemolytic uremic syndrome enters into the viable but non-culturable state in response to various stresses and resuscitates upon stress relief. Environ. Microbiol. 2011, 13, 3139–3148. [Google Scholar] [CrossRef] [PubMed]
- Reissbrodt, R.; Heier, H.; Tschäpe, H.; Kingsley, R.A.; Williams, P.H. Resuscitation by Ferrioxamine E of Stressed Salmonella enterica Serovar Typhimurium from Soil and Water Microcosms. Appl. Environ. Microbiol. 2000, 66, 4128–4130. [Google Scholar] [CrossRef] [Green Version]
- Jubair, M.; Morris, J.G., Jr.; Ali, A. Survival of Vibrio cholerae in nutrient-poor environments is associated with a novel “persister” phenotype. PLoS ONE 2012, 7, e45187. [Google Scholar] [CrossRef]
- Momtaz, H.; Dehkordi, F.S.; Rahimi, E.; Asgarifar, A. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran. BMC Public Health 2013, 13, 556–557. [Google Scholar] [CrossRef] [Green Version]
- Woegerbauer, M.; Jenni, B.; Thalhammer, F.; Graninger, W.; Burgmann, H. Natural Genetic Transformation of Clinical Isolates of Escherichia coli in Urine and Water. Appl. Environ. Microbiol. 2002, 68, 440–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, S.; Redfield, R.J. Natural DNA Uptake by Escherichia coli. PLoS ONE 2012, 7, e35620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, A.; Sekoguchi, A.; Murakami, Y.; Imai, J.; Kondo, K.; Shibata, Y.; Maeda, S. Competence development and horizontal plasmid transfer in natural Escherichia coli strain. In Microbes in the Spotlight: Recent Progress in the Understanding of Beneficial and Harmful Microorganisms; BrownWalker Press: Boka Raton, FL, USA, 2016; Volume 468. [Google Scholar]
- Levy-Booth, D.J.; Campbell, R.G.; Gulden, R.H.; Hart, M.M.; Powell, J.R.; Klironomos, J.N.; Pauls, K.P.; Swanton, C.J.; Trevors, J.T.; Dunfield, K.E. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 2007, 39, 2977–2991. [Google Scholar] [CrossRef]
- Luoto, J.; Najnin, N.; Mahmud, M.; Albert, J.; Islam, M.S.; Luby, S.; Unicomb, L.; Levine, D.I. What Point-of-Use Water Treatment Products Do Consumers Use? Evidence from a Randomized Controlled Trial among the Urban Poor in Bangladesh. PLoS ONE 2011, 6, e26132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, N.; Rahman, M.; Raj, S.; Ali, S.; Green, J.; Das, S.; Doza, S.; Mondol, M.H.; Wang, Y.; Islam, M.A.; et al. Quantitative assessment of fecal contamination in multiple environmental sample types in urban communities in Dhaka, Bangladesh using SaniPath microbial approach. PLoS ONE 2019, 14, e0221193. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Sample N (%) | Mean (CI) E. coli CFU/100 mL | Median (IQR1, IQR3) E. coli CFU/100 mL |
---|---|---|---|
Public domain source water [N = 240] | |||
WASA | 23 (10) | 24 (6, 43) | 0 (0, 30) |
Submersible pumps | 217 (90) | 62 (45, 80) | 4 (0, 69) |
Point-of-drinking water [N = 169] | |||
Treated water | 28 (16) | 106 (45, 167) | 26 (4, 203) |
Non-treated water | 142 (84) | 63 (45, 81) | 12 (1, 61) |
Types of treatment carried out in the households | |||
Boiling | 21 (12) | 111 (29, 193) | 22 (4, 194) |
Filtration | 7 (4) | 101 (−5, 206) | 28 (4, 208) |
Types of drinking vessels used at the point-of-drinking | |||
Mug | 82 (49) | 85 (56, 114) | 24 (4, 113) |
Glass | 53 (31) | 78 (43, 113) | 16 (0.5, 99) |
Bottle | 28 (17) | 19 (5, 33) | 8 (0.5, 22) |
Jug | 6 (3) | 41 (−48, 129) | 4 (2, 68) |
Pathogen | Genes | Point-of-Drinking Water, N = 169 (%) | Public Domain Source Water, N = 240 (%) |
---|---|---|---|
ETEC | eltB | 4 (2) | 15 (6) |
estA | 20 (12) | 24 (10) | |
eltB + estA | 0 (0) | 5 (2) | |
EHEC | vt1 | 7 (4) | 4 (2) |
vt2 | 6 (4) | 5 (2) | |
vt2 + eaeA | 1 (1) | 1 (0.4) | |
vt1 + vt2 + eaeA | 1 (1) | 0 | |
aEPEC * | bfpA | 2 (1) | 29 (12) |
eaeA | 10 (6) | 3 (1) | |
EIEC | ial | 1 (1) | 13 (5) |
ipaH | 9 (5) | 5 (2) | |
EAEC | pCVD | 1 (1) | 5 (2) |
Vibrio cholerae | ompW | 26 (15) | 26 (11) |
Salmonella spp. | invA | 3 (2) | 6 (3) |
Salmonella enteritidis | IE-1 | 0 | 1 (0.4) |
Salmonella typhimurium | flic-C | 2 (1) | 3 (1) |
Campylobacter spp. | 16srRNA | 4 (2) | 2 (1) |
Campylobacter coli | cueE | 3 (2) | 0 |
Campylobacter jejuni | cj0414 | 0 | 1 (0.4) |
Total pathogen | 100 (59) | 148 (62) |
Risk Group | Point of Collection | ETEC | EHEC | aEPEC | EIEC | EAEC | V. cholerae | Salmonella spp. | Campylobacter spp. | Total Pathogens (%) |
---|---|---|---|---|---|---|---|---|---|---|
Low risk (<1 E. coli/100 mL) | Point-of- drinking, N = 36 (%) | 2 (6) | 5 (14) | 2 (6) | 0 | 0 | 4 (11) | 0 | 1 (3) | 14 (39) |
Public domain source, N = 114 (%) | 26 (23) | 6 (5) | 20 (18) | 10 (9) | 2 (2) | 5 (4) | 4 (4) | 1 (0.9) | 74 (65) | |
Total N = 150 | 28 (19) | 11 (7) | 22 (15) | 10 (7) | 2 (1) | 9 (6) | 4 (3) | 2 (1) | 88 (59) | |
Intermediate risk (1–10 E. coli/100 mL) | Point-of- drinking, N = 35 (%) | 3 (9) | 0 | 5 (14) | 1 (3) | 1 (3) | 2 (6) | 0 | 0 | 12 (34) |
Public domain source, N = 23 (%) | 5 (22) | 0 | 4 (17) | 2 (3) | 1 (4) | 5 (22) | 0 | 0 | 17 (74) | |
Total N = 58 | 8 (14) | 0 | 9 (16) | 3 (5) | 2 (3) | 7 (12) | 0 | 0 | 29 (50) | |
High risk (11–100 E. coli/100 mL) | Point-of- drinking, N = 61 (%) | 7 (11) | 5 (8) | 4 (7) | 4 (7) | 0 | 9 (15) | 2 (3) | 2 (3) | 33 (54) |
Public domain source, N = 61 (%) | 8 (13) | 1 (2) | 8 (13) | 3 (5) | 1 (2) | 9 (15) | 2 (3) | 1 (2) | 33 (54) | |
Total N = 122 | 15 (12) | 6 (5) | 12 (10) | 7 (6) | 1 (1) | 18 (15) | 4 (3) | 3 (2) | 66 (54) | |
Very High risk (>100 E. coli/100 mL) | Point-of- drinking, N = 37 (%) | 12 (32) | 5 (14) | 1 (3) | 5 (14) | 0 | 11 (30) | 1 (3) | 1 (3) | 36 (97) |
Public domain source, N = 42 (%) | 5 (12) | 3 (7) | 0 | 3 (7) | 1 (2) | 7 (17) | 0 | 0 | 19 (45) | |
Total N = 79 | 17 (22) | 8 (10) | 1 (1) | 8 (10) | (1) | 18 (23) | 1 (1) | 1 (1) | 55 (70) |
Low Risk (<1 E. coli/100 mL) | Intermediate Risk (1–10 E. coli/100 mL) | High Risk (11–100 E. coli/100 mL) | Very High Risk (>100 E. coli/100 mL) | |||||
---|---|---|---|---|---|---|---|---|
Point-of-drinking | ||||||||
Single pathogen, N (%) | 8 (22%) | 4 (11%) | 21 (34%) | 17 (46%) | ||||
Co-existing pathogens > 1, N (%) | 3 (8%) | 4 (11%) | 6 (10%) | 9 (24%) | ||||
List of co-existing pathogens, N | ETEC + EHEC | 1 | ETEC + aEPEC | 1 | ETEC + EHEC | 2 | ETEC + EHEC | 1 |
ETEC + V. cholerae | 1 | EPEC + EAEC | 1 | ETEC + EIEC | 1 | ETEC + V. cholerae | 3 | |
EHEC + V. cholerae | 1 | aEPEC + V. cholerae | 2 | ETEC + V. cholerae | 1 | EHEC + V. cholerae | 2 | |
V.cholerae+ Salmonella typhi | 1 | EIEC +V. cholerae | 1 | |||||
EPEC + V. cholerae | 1 | ETEC + EIEC | 1 | |||||
ETEC + EIEC + V. cholerae | 1 | |||||||
Public domain source | ||||||||
Single pathogen, N (%) | 30 (28%) | 8 (35%) | 15 (25%) | 11 (26%) | ||||
Co-existing pathogens > 1, N (%) | 20 (17%) | 4 (17%) | 8 (13%) | 4 (10%) | ||||
List of co-existing pathogens, N | EPEC + EIEC | 3 | ETEC + EPEC | 1 | ETEC + EAEC | 1 | ETEC + EAEC | 1 |
ETEC + EPEC | 4 | ETEC + EAEC + EIEC | 1 | ETEC + EIEC | 1 | ETEC + EIEC | 1 | |
ETEC + EAEC | 1 | EPEC + V. cholerae | 2 | ETEC + EPEC | 2 | EPEC + V. cholerae | 1 | |
EHEC + EPEC | 2 | ETEC + EPEC + EIEC + V. cholerae | 1 | EIEC + V. cholerae | 1 | |||
ETEC + EHEC | 1 | EPEC + V. cholerae | 2 | |||||
ETEC + EIEC | 2 | ETEC + V. cholerae | 1 | |||||
ETEC + EHEC+ EPEC | 1 | |||||||
ETEC + EPEC + EIEC | 1 | |||||||
EPEC + EIEC + V. cholerae | 1 | |||||||
ETEC + EPEC + Salmonellae enteritidis | 1 | |||||||
ETEC + Salmonella typhimurium | 1 | |||||||
ETEC + Salmonella enteritidis | 1 | |||||||
V.cholerae + Campylobacter coli | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saima, S.; Ferdous, J.; Sultana, R.; Rashid, R.B.; Almeida, S.; Begum, A.; Jensen, P.K.M. Detecting Enteric Pathogens in Low-Risk Drinking Water in Dhaka, Bangladesh: An Assessment of the WHO Water Safety Categories. Trop. Med. Infect. Dis. 2023, 8, 321. https://doi.org/10.3390/tropicalmed8060321
Saima S, Ferdous J, Sultana R, Rashid RB, Almeida S, Begum A, Jensen PKM. Detecting Enteric Pathogens in Low-Risk Drinking Water in Dhaka, Bangladesh: An Assessment of the WHO Water Safety Categories. Tropical Medicine and Infectious Disease. 2023; 8(6):321. https://doi.org/10.3390/tropicalmed8060321
Chicago/Turabian StyleSaima, Sabera, Jannatul Ferdous, Rebeca Sultana, Ridwan Bin Rashid, Sara Almeida, Anowara Begum, and Peter Kjær Mackie Jensen. 2023. "Detecting Enteric Pathogens in Low-Risk Drinking Water in Dhaka, Bangladesh: An Assessment of the WHO Water Safety Categories" Tropical Medicine and Infectious Disease 8, no. 6: 321. https://doi.org/10.3390/tropicalmed8060321
APA StyleSaima, S., Ferdous, J., Sultana, R., Rashid, R. B., Almeida, S., Begum, A., & Jensen, P. K. M. (2023). Detecting Enteric Pathogens in Low-Risk Drinking Water in Dhaka, Bangladesh: An Assessment of the WHO Water Safety Categories. Tropical Medicine and Infectious Disease, 8(6), 321. https://doi.org/10.3390/tropicalmed8060321