Therapeutic Drug Monitoring of Vancomycin Concentrations for the Management of Bone and Joint Infections: An Urgent Need
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Dosage Recommendations Based on TDM Results
2.3. Clinical Outcomes
2.4. Statistical Analysis
3. Results
3.1. Clinical Evolution
3.2. Nephrotoxicity at the End of Treatment
3.3. TDM-Based Vancomycin Dosage Recommendations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Current concepts: Prosthetic-joint infections. N. Engl. J. Med. 2004, 351, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Colston, J.; Atkins, B. Bone and joint infection. Clin. Med. 2018, 18, 150–154. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Ricciardi, B.F.; Muthukrishnan, G.; Masters, E.A.; Kaplan, N.; Daiss, J.L.; Schwarz, E.M. New developments and future challenges in prevention, diagnosis, and treatment of prosthetic joint infection. J. Orthop. Res. 2020, 38, 1423–1435. [Google Scholar] [CrossRef] [PubMed]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the infectious diseases Society of America. Clin. Infect. Dis. 2013, 56, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Ariza, J.; Cobo, J.; Baraia-Etxaburu, J.; de Benito, N.; Bori, G.; Cabo, J.; Corona, P.; Esteban, J.; Horcajada, J.P.; Lora-Tamayo, J.; et al. Executive summary of management of prosthetic joint infections. Clinical practice guidelines by the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Enferm. Infecc. Microbiol. Clin. 2017, 35, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Oda, K.; Shoji, K.; Hanai, Y.; Takahashi, Y.; Fujii, S.; Hamada, Y.; Kimura, T.; Mayumi, T.; Ueda, T.; et al. Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Pharmaceutics 2022, 14, 489. [Google Scholar] [CrossRef] [PubMed]
- Neely, M.N.; Kato, L.; Youn, G.; Kraler, L.; Bayard, D.; van Guilder, M.; Schumitzky, A.; Yamada, W.; Jones, B.; Minejima, E. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob. Agents Chemother. 2018, 62, e02042-17. [Google Scholar] [CrossRef] [PubMed]
- Zasowski, E.J.; Murray, K.P.; Trinh, T.D.; Finch, N.A.; Pogue, J.M.; Mynatt, R.P.; Rybak, M.J. Identification of vancomycin exposure-toxicity thresholds in hospitalized patients receiving intravenous vancomycin. Antimicrob. Agents Chemother. 2018, 62, e01684-17. [Google Scholar] [CrossRef]
- He, N.; Su, S.; Ye, Z.; Du, G.; He, B.; Li, D.; Liu, Y.; Yang, K.; Zhang, X.; Zhang, Y.; et al. Evidence-based Guideline for Therapeutic Drug Monitoring of Vancomycin: 2020 Update by the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. Clin. Infect. Dis. 2020, 71, S363–S371. [Google Scholar] [CrossRef]
- Le Vavasseur, B.; Zeller, V. Antibiotic Therapy for Prosthetic Joint Infections: An Overview. Antibiotics 2022, 11, 486. [Google Scholar] [CrossRef]
- Triffault-Fillit, C.; Valour, F.; Guillo, R.; Tod, M.; Goutelle, S.; Lustig, S.; Fessy, M.H.; Chidiac, C.; Ferry, T. Prospective cohort study of the tolerability of prosthetic joint infection empirical antimicrobial therapy. Antimicrob. Agents Chemother. 2018, 62, e00163-18. [Google Scholar] [CrossRef]
- McNally, M.; Sousa, R.; Wouthuyzen-Bakker, M.; Chen, A.F.; Soriano, A.; Vogely, H.C.; Clauss, M.; Higuera, C.A.; Trebše, R. The EBJIS definition of periprosthetic joint infection: A practical guide for clinicians. Bone Jt. J. 2021, 103, 18–25. [Google Scholar] [CrossRef]
- Ribera, A.; Benavent, E.; Lora-Tamayo, J.; Tubau, F.; Pedrero, S.; Cabo, X.; Ariza, J.; Murillo, O. Osteoarticular infection caused by MDR Pseudomonas aeruginosa: The benefits of combination therapy with colistin plus b -lactams. J. Antimicorbial. Chemother. 2015, 70, 3357–3365. [Google Scholar]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatr. Am. J. Health Pharm. 2020, 77, 835–863. [Google Scholar] [CrossRef] [PubMed]
- Walther, C.P.; Podoll, A.S.; Finkel, K.W. Summary of clinical practice guidelines for acute kidney injury. KDIGO. Clin. Pract. 2012, 120, c179–c184. [Google Scholar]
- Sendi, P.; Zimmerli, W. Antimicrobial treatment concepts for orthopaedic device-related infection. Clin. Microbiol. Infect. 2012, 18, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Thabit, A.K.; Fatani, D.F.; Bamakhrama, M.S.; Barnawi, O.A.; Basudan, L.O.; Alhejaili, S.F. Antibiotic penetration into bone and joints: An updated review. Int. J. Infect. Dis. 2019, 81, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Han, H.K.; An, H.; Shin, K.H.; Shin, D.; Lee, S.H.; Kim, J.H.; Cho, S.H.; Kang, H.R.; Jang, I.J.; Yu, K.S.; et al. Trough concentration over 12.1 mg/L is a major risk factor of vancomycin-related nephrotoxicity in patients with therapeutic drug monitoring. Ther. Drug Monit. 2014, 36, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.; Lomaestro, B.; Rotschafer, J.C.; Moellering, R.; Craig, W.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am. J. Health Pharm. 2009, 66, 82–98. [Google Scholar] [CrossRef]
- Maki, N.; Ohkuchi, A.; Tashiro, Y.; Kim, M.R.; Le, M.; Sakamoto, T.; Matsubara, S.; Hakamata, Y. Initial dose of vancomycin based on body weight and creatinine clearance to minimize inadequate trough levels in Japanese adults. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2537–2543. [Google Scholar] [CrossRef]
- Shimamoto, Y.; Fukuda, T.; Tanaka, K.; Komori, K.; Sadamitsu, D. Systemic inflammatory response syndrome criteria and vancomycin dose requirement in patients with sepsis. Intensive Care Med. 2013, 39, 1247–1252. [Google Scholar] [CrossRef]
- Yasuhara, M.; Iga, T.; Zenda, H.; Okumura, K.; Oguma, T.; Yano, Y.; Hori, R. Population pharmacokinetics of vancomycin in Japanese adult patients. Ther. Drug Monit. 1998, 20, 139–148. [Google Scholar] [CrossRef]
- Imai, S.; Takekuma, Y.; Miyai, T.; Sugawara, M. A New Algorithm Optimized for Initial Dose Settings of Vancomycin Using Machine Learning. Biol. Pharm. Bull. 2020, 43, 188–193. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Kani, H.; Yamamoto, T.; Tanaka, T.; Suzuki, H. Development of a decision flowchart to identify the patients need high-dose vancomycin in early phase of treatment. J. Pharm. Health Care Sci. 2022, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N.; Flamm, R.K.; Castanheira, M.; Sader, H.S.; Smart, J.I.; Mendes, R.E. Activity of telavancin against Gram-positive pathogens isolated from bone and joint infections in North American, Latin American, European and Asia-Pacific nations. Diagn. Microbiol. Infect. Dis. 2017, 88, 184–187. [Google Scholar] [CrossRef]
- Pfaller, A.M.A.; Flamm, R.K.; Castanheira, M.; Helio, S.; Mendes, R.E. Dalbavancin in vitro activity obtained against gram-positive clinical isolates causing bone and joint infections in United States and european hospitals (2011–2016). Int. J. Antimicrob. Agents 2017, 51, 608–611. [Google Scholar] [CrossRef]
- Men, P.; Li, H.; Zhai, S.; Zhao, R. Association between the AUC 0-24/MIC Ratio of Vancomycin and Its Clinical Effectiveness: A Systematic Review and Meta-Analysis. PLoS ONE. 2016, 11, e0146224. [Google Scholar] [CrossRef] [PubMed]
- He, J.W.; Wang, J.; Cao, L.; Zhang, X.G.; Li, G.Q.; Xu, B.Y.; Ji, B.C.; Ge, S.Y.; Yang, J.H. Serum and Synovial Vancomycin Concentrations in Patients with Prosthetic Joint Infection after Intra-articular Infusion. Eur. J. Drug Metab. Pharm. 2021, 46, 637–643. [Google Scholar] [CrossRef]
- Rybak, M. The Pharmacokinetic and Pharmacodynamic Properties of Vancomycin. Clin. Infect. Dis. 2006, 42, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.E.; Peppers, M.P.; Whiteside, L.A.; Lazear, R.M. Vancomycin concentration in synovial fluid: Direct injection into the knee vs. intravenous infusion. J. Arthroplast. 2014, 29, 564–568. [Google Scholar] [CrossRef] [PubMed]
All Patients n = 94 | AUC24h <400 mg·h/L n = 22 | AUC24h 400–600 mg·h/L n = 42 | AUC24h >600 mg·h/L n = 30 | p-Value | |
---|---|---|---|---|---|
Gender | 0.086 | ||||
Male, n (%) | 47 (50.0%) | 9 (40.9%) | 18 (42.9%) | 20 (66.7%) | |
Female, n (%) | 47 (50.0%) | 13 (59.1%) | 24 (57.1%) | 10 (33.3%) | |
Age, years | 68.5 (56.2–79.8) | 61.0 (49.8–65.0) | 67.5 (53.8–73.8) | 82.5 (68.5–86.0) | <0.001 |
Body weight, kg | 72.0 (61.2–87.0) | 75.5 (65.0–92.5) | 75.5 (65.0–90.0) | 64.5 (57.2–74.2) | 0.005 |
BMI, kg/m2 | 26.6 (23.6–31.1) | 26.9 (24.7–34.2) | 26.9 (24.0–31.2) | 25.0 (23.3–30.1) | 0.277 |
Obesity, n (%) | 34 (36.2) | 8 (36.4) | 16 (38.1) | 10 (33.3) | 0.917 |
Charlson Index | 1 (0–1) | 0 (0–1) | 0 (0–1) | 1 (0–2) | 0.034 |
Type of BJI, n (%) | 0.002 | ||||
FRI | 23 (24.5%) | 8 (36.4%) | 6 (14.3%) | 9 (30.0%) | |
APJI | 26 (27.7%) | 6 (27.3%) | 9 (21.4%) | 11 (36.7%) | |
CPJI | 22 (23.4%) | 3 (13.6%) | 11 (26.2%) | 8 (26.7%) | |
OM | 16 (17.0%) | 2 (9.09%) | 14 (33.3%) | 0 (0.00%) | |
Others | 7 (7.45%) | 3 (13.6%) | 2 (4.76%) | 2 (6.67%) | |
Empirical treatment, n (%) | 49 (52.1%) | 14 (63.6%) | 21 (50.0%) | 14 (46.7%) | 0.449 |
Directed treatment, n (%) | 45 (47.9%) | 8 (36.4%) | 21 (50.0%) | 16 (53.3%) | |
Staphylococci, n (%) | 38 (40.4) | 7 (31.8) | 19 (45.2) | 12 (40.0) | 0.582 |
MRSA | 4 (4.2%) | 1 (1.1%) | 2 (2.1%) | 1 (1.1%) | 0.953 |
MSSA | 13 (13.8%) | 2 (2.1%) | 6 (6.4%) | 5 (5.3%) | |
Others | 21 (22.3%) | 4 (4.3%) | 11 (11.7%) | 6 (6.4%) | |
Enterococci, n (%) | 7 (7.5) | 0 (0) | 2 (4.8) | 5 (16.7) | 0.055 |
Polymicrobial infection | 20 (35.1) | 1 (11.1) | 10 (37.0) | 9 (42.9) | 0.238 |
CKD, n (%) | 7 (7.45%) | 0 (0.00%) | 0 (0.00%) | 7 (23.3%) | <0.001 |
Baseline SCr, μmol/L | 67.2 (53.0–77.8) | 64.5 (51.3–74.3) | 65.4 (50.4–74.3) | 70.7 (62.8–96.4) | 0.030 |
Baseline GFR (CKD-EPI), mL/min | 88.4 (32.1–147.8) | 99.9 (59.3–147.8) | 99.4 (44.6-139.7) | 71.5 (32.1–110.1) | <0.001 |
Initial vancomycin dose | 0.051 | ||||
1 g/8 h | 47 (50.0%) | 6 (27.3%) | 24 (57.1%) | 17 (56.7%) | |
1 g/12 h | 47 (50.0%) | 16 (72.7%) | 18 (42.9%) | 13 (43.3%) | |
Initial vancomycin daily dose (mg/kg/day) | 33.3 (27.9–40.0) | 29.6 (26.4–32.1) | 33.3 (28.6–39.9) | 37.3 (31.4–48.0 | 0.001 |
Days of vancomycin therapy | 9 (7.0–13.0) | 9 (6–12) | 10 (8–13.8) | 8. (5.3–13.8) | 0.051 |
SCr at the end of treatment, μmol/L | 61.9 (49.5–82.8) | 68.9 (54.8–71.6) | 56.6 (43.3–78.7) | 67.2 (43.3–78.7) | 0.221 |
Nephrotoxicity, n (%) | 15 (22.7%) | 2 (20.0%) | 4 (14.3%) | 9 (32.1%) | 0.275 |
Variable | Odds Ratio (CI95%) | p-Value |
---|---|---|
Female gender | 0.758 (0.231–2.487) | 0.647 |
Age (per 10 years) | 0.670 (0.446–1.005) | 0.053 |
Vancomycin total daily dose <35 mg/kg/day | 0.145 (0.033–0.638) | 0.011 |
Variable | Odds Ratio (CI95%) | p-Value |
---|---|---|
Female gender | 0.213 (0.054–0.850) | 0.029 |
Age (per 10 years) | 1.580 (0.980–2.546) | 0.060 |
Body weight (per 10 kg) | 0.638 (0.386–1.054) | 0.080 |
Baseline serum creatinine (per 0.1 mg/dL) | 1.726 (1.248–2.386) | 0.001 |
Vancomycin total daily dose >35 mg/kg/day | 1.463 (0.331–6.456) | 0.616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rio-No, L.; Sorli, L.; Arderiu-Formenti, A.; De Antonio, M.; Martorell, L.; Subirana, I.; Puig, L.; Alier, A.; Gómez-Junyent, J.; Pérez-Prieto, D.; et al. Therapeutic Drug Monitoring of Vancomycin Concentrations for the Management of Bone and Joint Infections: An Urgent Need. Trop. Med. Infect. Dis. 2023, 8, 113. https://doi.org/10.3390/tropicalmed8020113
Rio-No L, Sorli L, Arderiu-Formenti A, De Antonio M, Martorell L, Subirana I, Puig L, Alier A, Gómez-Junyent J, Pérez-Prieto D, et al. Therapeutic Drug Monitoring of Vancomycin Concentrations for the Management of Bone and Joint Infections: An Urgent Need. Tropical Medicine and Infectious Disease. 2023; 8(2):113. https://doi.org/10.3390/tropicalmed8020113
Chicago/Turabian StyleRio-No, Laura, Luisa Sorli, Alba Arderiu-Formenti, Marta De Antonio, Lucas Martorell, Isaac Subirana, Lluis Puig, Albert Alier, Joan Gómez-Junyent, Daniel Pérez-Prieto, and et al. 2023. "Therapeutic Drug Monitoring of Vancomycin Concentrations for the Management of Bone and Joint Infections: An Urgent Need" Tropical Medicine and Infectious Disease 8, no. 2: 113. https://doi.org/10.3390/tropicalmed8020113
APA StyleRio-No, L., Sorli, L., Arderiu-Formenti, A., De Antonio, M., Martorell, L., Subirana, I., Puig, L., Alier, A., Gómez-Junyent, J., Pérez-Prieto, D., & Luque, S. (2023). Therapeutic Drug Monitoring of Vancomycin Concentrations for the Management of Bone and Joint Infections: An Urgent Need. Tropical Medicine and Infectious Disease, 8(2), 113. https://doi.org/10.3390/tropicalmed8020113