Performance of MALDI–TOF Mass Spectrometry in the Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Bacteria by Conventional Biochemical Methods
2.2. Identification of Bacteria by MALDI–TOF MS
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988, 2, 151–153. [Google Scholar] [CrossRef]
- Schubert, S.; Kostrzewa, M. MALDI-TOF MS in the Microbiology Laboratory: Current Trends. Curr. Issues Mol. Biol. 2017, 23, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Kassim, A.; Pflüger, V.; Premji, Z.; Daubenberger, C.; Revathi, G. Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiol. 2017, 17, 1–8. [Google Scholar] [CrossRef]
- Zhou, C.; Hu, B.; Zhang, X.; Huang, S.; Shan, Y.; Ye, X. The value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in identifying clinically relevant bacteria: A comparison with automated microbiology system. J. Thorac. Dis. 2014, 6, 545–552. [Google Scholar] [CrossRef]
- van Veen, S.Q.; Claas, E.C.J.; Kuijper, E.J. High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories. J. Clin. Microbiol. 2010, 48, 900–907. [Google Scholar] [CrossRef] [Green Version]
- Powell, E.A.; Blecker-Shelly, D.; Montgomery, S.; Mortensen, J.E. Application of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of the Fastidious Pediatric Pathogens Aggregatibacter, Eikenella, Haemophilus, and Kingella. J. Clin. Microbiol. 2013, 51, 3862–3864. [Google Scholar] [CrossRef] [Green Version]
- Martins, K.B.; Ferreira, A.M.; Mondelli, A.L.; Rocchetti, T.T.; Lr de S da Cunha, M.D. Evaluation of MALDI-TOF VITEK ® MS and VITEK® 2 system for the identification of Staphylococcus saprophyticus. Future Microbiol. 2018, 13, 1603–1609. [Google Scholar] [CrossRef]
- Ratcliffe, P.; Fang, H.; Thidholm, E.; Boräng, S.; Westling, K.; Özenci, V. Comparison of MALDI-TOF MS and VITEK 2 system for laboratory diagnosis of Granulicatella and Abiotrophia species causing invasive infections. Diagn. Microbiol. Infect. Dis. 2013, 77, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Cavalieri, S.J.; Kwon, S.; Vivekanandan, R.; Ased, S.; Carroll, C.; Anthone, J.; Schmidt, D.; Baysden, M.; Destache, C.J. Effect of antimicrobial stewardship with rapid MALDI-TOF identification and Vitek 2 antimicrobial susceptibility testing on hospitalization outcome. Diagn. Microbiol. Infect. Dis. 2019, 95, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Perez, K.K.; Olsen, R.J.; Musick, W.L.; Cernoch, P.L.; Davis, J.R.; Land, G.A.; Peterson, L.E.; Musser, J.M. Integrating Rapid Pathogen Identification and Antimicrobial Stewardship Significantly Decreases Hospital Costs. Arch. Pathol. Lab. Med. 2012, 137, 1247–1254. [Google Scholar] [CrossRef] [Green Version]
- Bhavsar, S.M.; Dingle, T.; Hamula, C.L. The impact of blood culture identification by MALDI-TOF MS on the antimicrobial management of pediatric patients. Diagn. Microbiol. Infect. Dis. 2018, 92, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Flores-Treviño, S.; Garza-González, E.; Mendoza-Olazarán, S.; Morfín-Otero, R.; Camacho-Ortiz, A.; Rodríguez-Noriega, E.; Martinez-Melendez, A.; Bocanegra-Ibarias, P. Screening of biomarkers of drug resistance or virulence in ESCAPE pathogens by MALDI-TOF mass spectrometry. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sow, D.; Fall, B.; Ndiaye, M.; Ba, B.S.; Sylla, K.; Tine, R.; Lô, A.C.; Abiola, A.; Wade, B.; Dieng, T.; et al. Usefulness of MALDI-TOF Mass Spectrometry for Routine Identification of Candida Species in a Resource-Poor Setting. Mycopathologia 2015, 180, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Wattal, C.; Oberoi, J.K.; Goel, N.; Raveendran, R.; Khanna, S. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 36, 807–812. [Google Scholar] [CrossRef]
- Vandepitte, J.; Verhaegen, J.; Engbaek, K.; Rohner, P.; Piot, P.; Heuck, C.C. Basic Laboratory Procedures in Clinical Bacteriology, 2nd ed.; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Risch, M.; Radjenovic, D.; Han, J.N.; Wydler, M.; Nydegger, U.; Risch, L. Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med Wkly. 2010, 140. [Google Scholar] [CrossRef]
- TeKippe, E.M.; Burnham, C.-A.D. Evaluation of the Bruker Biotyper and VITEK MS MALDI-TOF MS systems for the identification of unusual and/or difficult-to-identify microorganisms isolated from clinical specimens. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 2163–2171. [Google Scholar] [CrossRef]
- Luo, L.; Cao, W.; Chen, W.; Zhang, R.; Jing, L.; Chen, H.; Yu, F.; Yue, J. Evaluation of the VITEK MS knowledge base version 3.0 for the identification of clinically relevant Mycobacterium species. Emerg Microbes Infect. 2018, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pauker, V.I.; Thoma, B.R.; Grass, G.; Bleichert, P.; Hanczaruk, M.; Zöller, L.; Zange, S. Improved Discrimination of Bacillus anthracis from Closely Related Species in the Bacillus cereus Sensu Lato Group Based on Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2018, 56, e01900-17. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, S.A.; Patel, R. Importance of Using Bruker’s Security-Relevant Library for Biotyper Identification of Burkholderia pseudomallei, Brucella Species, and Francisella tularensis. J. Clin. Microbiol. 2013, 51, 1639–1640. [Google Scholar] [CrossRef] [Green Version]
- Khot, P.D.; Couturier, M.R.; Wilson, A.R.; Croft, A.; Fisher, M.A. Optimization of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Analysis for Bacterial Identification. J. Clin. Microbiol. 2012, 50, 3845–3852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, E.; Bakhalek, Y.; Taha, M.-K. Identification of Neisseria meningitidis by MALDI-TOF MS may not be reliable. Clin. Microbiol. Infect. 2019, 25, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Ghosh, A.K.; Mirdha, B.R.; Xess, I.; Paul, S.; Samantaray, J.C.; Srinivasan, A.; Khalil, S.; Rastogi, N.; Dabas, Y. MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers. J. Microbiol. Methods 2015, 109, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Starostin, K.V.; Demidov, E.A.; Ershov, N.I.; Bryanskaya, A.V.; Efimov, V.M.; Shlyakhtun, V.N.; Peltek, S.E. Creation of an Online Platform for Identification of Microogranisms: Peak-Picking or Full-Spectrum Analysis. Front. Microbiol. 2020, 11, 609033. [Google Scholar] [CrossRef]
- Patel, R. MALDI-TOF MS for the Diagnosis of Infectious Diseases. Clin. Chem. 2015, 61, 100–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pathogen | No. of Tests Performed with Conventional Method * | No. of MALDI Biotyper with Score | Concordance with Conventional Method to Indicated Level (%) | |||
---|---|---|---|---|---|---|
≤1.699 | 1.700–1.999 | ≥2.000 | Genus | Species | ||
Gram-positive cocci | 942 | 3 | 90 | 848 | 100 | 97.8 |
Enterococcus faecalis | 23 | 0 | 1 | 22 | 100 | 95.7 |
Enterococcus faecium | 29 | 0 | 0 | 29 | 100 | 100 |
Staphylococcus aureus | 411 | 0 | 19 | 391 | 100 | 100 |
Staphylococcus capitis | 3 | 0 | 0 | 3 | 100 | 100 |
Staphylococcus cohnii | 1 | 0 | 1 | 0 | 100 | 100 |
Staphylococcus epidermidis | 17 | 0 | 4 | 13 | 100 | 100 |
Staphylococcus haemolyticus | 37 | 0 | 5 | 32 | 100 | 100 |
Staphylococcus hominis | 53 | 0 | 1 | 52 | 100 | 98.9 |
Staphylococcus kloosi | 1 | 1 | 0 | 0 | 100 | 100 |
Staphylococcus lugdunensis | 1 | 0 | 0 | 1 | 100 | 100 |
Staphylococcus saprophyticus | 7 | 0 | 0 | 6 | 100 | 100 |
Staphylococcus warneri | 1 | 0 | 0 | 1 | 100 | 100 |
Streptococcus agalactiae | 17 | 0 | 0 | 17 | 100 | 100 |
Streptococcus anginosus | 4 | 0 | 1 | 3 | 100 | 100 |
Streptococcus dysagalactiae | 21 | 0 | 0 | 21 | 100 | 95.5 |
Streptococcus gallolyticus | 1 | 1 | 0 | 1 | 100 | 100 |
Streptococcus intermedius | 1 | 0 | 0 | 1 | 100 | 100 |
Streptococcus mitis | 144 | 1 | 18 | 125 | 100 | 100 |
Streptococcus mitis spp | 1 | 0 | 1 | 0 | 100 | 100 |
Streptococcus oralis | 67 | 0 | 20 | 47 | 100 | 100 |
Streptococcus oralis spp | 1 | 0 | 1 | 0 | 100 | 100 |
Streptococcus parasanguinis | 7 | 0 | 4 | 3 | 100 | 100 |
Streptococcus peroris | 2 | 0 | 1 | 1 | 100 | 100 |
Streptococcus pneumoniae | 48 | 0 | 10 | 38 | 100 | 62.5 |
Streptococcus pyogenes | 31 | 0 | 1 | 30 | 100 | 100 |
Streptococcus salivarius | 13 | 0 | 2 | 11 | 100 | 100 |
Gram-positive rod | 122 | 1 | 9 | 112 | 100 | 100 |
Clostridium tertium | 1 | 0 | 0 | 1 | 100 | 100 |
Corynebacterium diphtheriae | 119 | 0 | 9 | 110 | 100 | 100 |
Corynebacterium jeikeium | 1 | 0 | 0 | 1 | 100 | 100 |
Rhodococcus equi | 1 | 1 | 0 | 0 | 100 | 100 |
Gram-negative cocci | 34 | 0 | 0 | 34 | 100 | 100 |
Moraxella catarrhalis | 21 | 0 | 0 | 21 | 100 | 100 |
Moraxella equi | 1 | 0 | 0 | 1 | 100 | 100 |
Moraxella osloensis | 1 | 0 | 0 | 1 | 100 | 100 |
Neisseria gonorrhoeae | 2 | 0 | 0 | 2 | 100 | 100 |
Neisseria meningitidis | 9 | 0 | 0 | 9 | 100 | 100 |
Gram-negative rod | 2161 | 21 | 139 | 1999 | 99.8 | 95.1 |
Achromobacter xylosoxidans | 18 | 1 | 3 | 14 | 94.4 | 77.8 |
Acinetobacter baumannii | 331 | 1 | 9 | 321 | 100 | 99.4 |
Acinetobacter baylyi | 5 | 0 | 3 | 2 | 100 | 20 |
Acinetobacter calcoaceticus | 2 | 1 | 1 | 0 | 100 | 50 |
Acinetobacter guillouiae | 2 | 0 | 1 | 1 | 100 | 100 |
Acinetobacter haemolyticus | 3 | 0 | 0 | 3 | 100 | 100 |
Acinetobacter junii | 13 | 0 | 4 | 9 | 100 | 69.2 |
Acinetobacter nosocomialis | 22 | 0 | 1 | 21 | 100 | 36.4 |
Acinetobacter pittii | 17 | 0 | 1 | 16 | 100 | 47.1 |
Acinetobacter radioresistens | 1 | 1 | 0 | 0 | 100 | 100 |
Acinetobacter ursingii | 12 | 0 | 0 | 12 | 100 | 83.3 |
Aeromonas caviae | 3 | 0 | 0 | 3 | 100 | 100 |
Aeromonas hydrophila | 2 | 0 | 0 | 2 | 100 | 100 |
Aeromonas veronii | 1 | 0 | 0 | 1 | 100 | 0 |
Burkholderia cenocepacia | 3 | 0 | 0 | 3 | 100 | 33.3 |
Burkholderia cepacia | 9 | 0 | 1 | 8 | 100 | 100 |
Burkholderia seminalis | 2 | 0 | 0 | 2 | 100 | 50 |
Burkholderia thailandensis | 3 | 0 | 2 | 1 | 100 | 33.3 |
Cedecea neteri | 1 | 0 | 0 | 1 | 100 | 0 |
Citrobacter amalonaticus | 1 | 1 | 0 | 0 | 100 | 100 |
Citrobacter freundii | 8 | 0 | 1 | 7 | 100 | 100 |
Citrobacter koseri | 10 | 0 | 0 | 10 | 100 | 100 |
Citrobacter sedlakii | 2 | 0 | 0 | 2 | 100 | 50 |
Cronobacter sakazakii | 1 | 0 | 1 | 0 | 100 | 100 |
Delftia acidovorans | 3 | 0 | 0 | 3 | 100 | 100 |
Enterobacter asburiae | 21 | 0 | 3 | 18 | 100 | 57.1 |
Enterobacter cloacae ** | 81 | 1 | 3 | 76 | 100 | 97.5 |
Enterobacter gergoviae | 1 | 0 | 0 | 1 | 100 | 100 |
Enterobacter kobei | 8 | 1 | 2 | 5 | 100 | 62.5 |
Escherichia coli | 166 | 0 | 4 | 162 | 100 | 100 |
Haemophilus haemolyticus | 28 | 1 | 4 | 23 | 100 | 92.9 |
Haemophilus influenzae | 123 | 1 | 3 | 119 | 100 | 99.2 |
Haemophilus parahaemolyticus | 35 | 1 | 1 | 33 | 100 | 65.7 |
Haemophilus parainfluenzae | 88 | 0 | 5 | 82 | 100 | 92 |
Enterobacter aerogenes | 12 | 0 | 1 | 11 | 100 | 100 |
Klebsiella oxytoca | 4 | 0 | 1 | 3 | 100 | 75 |
Klebsiella pneumoniae | 526 | 2 | 48 | 476 | 100 | 99.6 |
Leclercia adecarboxylata | 1 | 0 | 0 | 1 | 0 | 0 |
Morganella morganii | 5 | 0 | 0 | 5 | 100 | 100 |
Pantoea septica | 1 | 0 | 1 | 0 | 100 | 0 |
Pasteurella multocida | 5 | 0 | 0 | 5 | 100 | 100 |
Proteus mirabilis | 42 | 0 | 1 | 41 | 100 | 100 |
Proteus vulgaris | 10 | 0 | 2 | 8 | 100 | 90 |
Providencia rettgeri | 4 | 0 | 0 | 4 | 100 | 100 |
Providencia stuartii | 4 | 0 | 1 | 3 | 100 | 100 |
Pseudomonas aeruginosa | 400 | 5 | 13 | 382 | 100 | 99.3 |
Pseudomonas anguilliseptica | 1 | 1 | 0 | 0 | 0 | 0 |
Pseudomonas fluorescens | 1 | 0 | 0 | 1 | 100 | 100 |
Pseudomonas fulva | 1 | 0 | 0 | 1 | 100 | 0 |
Pseudomonas libanensis | 1 | 0 | 0 | 1 | 100 | 0 |
Pseudomonas mendocina | 1 | 0 | 1 | 0 | 100 | 100 |
Pseudomonas monteilii | 1 | 0 | 0 | 1 | 100 | 0 |
Pseudomonas mosselii | 2 | 1 | 1 | 0 | 100 | 100 |
Pseudomonas otitidis | 3 | 0 | 1 | 2 | 100 | 33.3 |
Pseudomonas putida | 3 | 0 | 2 | 1 | 100 | 66.7 |
Pseudomonas rhodesiae | 1 | 0 | 1 | 0 | 100 | 0 |
Pseudomonas stutzeri | 9 | 0 | 0 | 9 | 100 | 88.9 |
Ralstonia insidiosa | 1 | 0 | 0 | 1 | 100 | 100 |
Ralstonia mannitolytica | 1 | 0 | 0 | 1 | 100 | 100 |
Raoultella ornithinolytica | 2 | 1 | 0 | 1 | 100 | 50 |
Serratia liquefaciens | 2 | 0 | 0 | 2 | 100 | 100 |
Serratia marcescens | 11 | 0 | 3 | 8 | 100 | 100 |
Serratia rubidaea | 1 | 0 | 0 | 1 | 100 | 100 |
Serratia ureilytica | 2 | 0 | 0 | 2 | 100 | 0 |
Shewanella algae | 1 | 0 | 0 | 1 | 100 | 100 |
Shewanella putrefaciens | 1 | 0 | 0 | 1 | 100 | 100 |
Stenotrophomonas maltophilia | 74 | 1 | 8 | 65 | 98.6 | 98.6 |
Vibrio parahaemolyticus | 1 | 0 | 1 | 0 | 100 | 100 |
Fungi | 270 | 15 | 87 | 169 | 100 | 94.7 |
Candida albicans | 113 | 3 | 34 | 76 | 100 | 99.1 |
Candida dubliniensis | 5 | 1 | 1 | 3 | 100 | 80 |
Candida glabrata | 6 | 1 | 2 | 3 | 100 | 83.3 |
Candida guilliermondii | 2 | 2 | 0 | 0 | 100 | 100 |
Candida krusei | 4 | 1 | 0 | 3 | 100 | 100 |
Candida lusitaniae | 1 | 0 | 1 | 0 | 100 | 100 |
Candida orthopsilosis | 1 | 0 | 1 | 0 | 100 | 100 |
Candida parapsilosis | 1 | 0 | 1 | 0 | 100 | 100 |
Candida pararugosa | 1 | 0 | 0 | 1 | 100 | 100 |
Candida tropicalis | 53 | 1 | 24 | 28 | 100 | 94.3 |
Cryptococcus neoformans | 83 | 6 | 22 | 55 | 100 | 100 |
Trichosporon inkin | 1 | 0 | 1 | 0 | 100 | 0 |
Total | 3530 | 40 | 325 | 3164 | 99.9 | 96.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osa, M.; Belo, M.C.; Dela Merced, Z.; Villanueva, A.M.G.; Mauhay, J.; Celis, A.; Catli, M.; Suzuki, S.; Ukawa, T.; Tamaki, S.; et al. Performance of MALDI–TOF Mass Spectrometry in the Philippines. Trop. Med. Infect. Dis. 2021, 6, 112. https://doi.org/10.3390/tropicalmed6030112
Osa M, Belo MC, Dela Merced Z, Villanueva AMG, Mauhay J, Celis A, Catli M, Suzuki S, Ukawa T, Tamaki S, et al. Performance of MALDI–TOF Mass Spectrometry in the Philippines. Tropical Medicine and Infectious Disease. 2021; 6(3):112. https://doi.org/10.3390/tropicalmed6030112
Chicago/Turabian StyleOsa, Morichika, Maria Cecilia Belo, Zita Dela Merced, Annavi Marie G. Villanueva, Jaira Mauhay, Alyannah Celis, Melissa Catli, Shuichi Suzuki, Tatsuya Ukawa, Shingo Tamaki, and et al. 2021. "Performance of MALDI–TOF Mass Spectrometry in the Philippines" Tropical Medicine and Infectious Disease 6, no. 3: 112. https://doi.org/10.3390/tropicalmed6030112
APA StyleOsa, M., Belo, M. C., Dela Merced, Z., Villanueva, A. M. G., Mauhay, J., Celis, A., Catli, M., Suzuki, S., Ukawa, T., Tamaki, S., Dhoubhadel, B. G., Ariyoshi, K., Telan, E. F. O., Umipig, D. V., Parry, C. M., Saito, N., & Smith, C. (2021). Performance of MALDI–TOF Mass Spectrometry in the Philippines. Tropical Medicine and Infectious Disease, 6(3), 112. https://doi.org/10.3390/tropicalmed6030112