The Case for the Development of a Chagas Disease Vaccine: Why? How? When?
Abstract
:1. Background
2. The rationale for a Vaccine
3. Current Vaccine Platforms
4. Challenges and the Way Forward
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rassi, A., Jr.; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet 2010, 375, 1388–1402. [Google Scholar] [CrossRef]
- Schmunis, G.A.; Yadon, Z.E. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop. 2010, 115, 14–21. [Google Scholar] [CrossRef] [PubMed]
- WHO. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 2015, 90, 33–43. [Google Scholar]
- Arnal, A.; Waleckx, E.; Rico-Chavez, O.; Herrera, C.; Dumonteil, E. Estimating the current burden of Chagas disease in Mexico: A systematic review and meta-analysis of epidemiological surveys from 2006 to 2017. PLoS Negl. Trop. Dis. 2019, 13, e0006859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buekens, P.; Lopez-Cardenas, J.; Dumonteil, E.; Padilla-Raygoza, N. Including unpublished surveys in reviews on Chagas disease in Mexico. Publ. Health Rev. 2020, 41, 24. [Google Scholar] [CrossRef] [PubMed]
- Schofield, C.J.; Dias, J.C. The Southern Cone Initiative against Chagas disease. Adv. Parasitol. 1999, 42, 1–27. [Google Scholar] [PubMed]
- Cedillos, R.A.; Romero, J.E.; Sasagawa, E. Elimination of Rhodnius prolixus in El Salvador, Central America. Mem. Inst. Oswaldo Cruz 2012, 107, 1068–1069. [Google Scholar] [CrossRef] [Green Version]
- Waleckx, E.; Gourbière, S.; Dumonteil, E. Intrusive triatomines and the challenge of adapting vector control practices. Mem. Inst. Oswaldo Cruz 2015, 110, 324–338. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.Y.; Bartsch, S.M.; Skrip, L.; Hertenstein, D.L.; Avelis, C.M.; Ndeffo-Mbah, M.; Tilchin, C.; Dumonteil, E.O.; Galvani, A. Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula. PLoS Negl. Trop. Dis. 2018, 12, e0006337. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.C.P.; Beaton, A.; Acquatella, H.; Bern, C.; Bolger, A.F.; Echeverria, L.E.; Dutra, W.O.; Gascon, J.; Morillo, C.A.; Oliveira-Filho, J.; et al. Chagas Cardiomyopathy: An Update of Current Clinical Knowledge and Management: A Scientific Statement From the American Heart Association. Circulation 2018, 138, e169–e209. [Google Scholar] [CrossRef]
- Marin-Neto, J.A.; Cunha-Neto, E.; Maciel, B.C.; Simoes, M.V. Pathogenesis of chronic Chagas heart disease. Circulation 2007, 115, 1109–1123. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, C.J.; Hernandez, S.; Olmedo, W.; Abuhamidah, A.; Traina, M.I.; Sanchez, D.R.; Soverow, J.; Meymandi, S.K. Safety Profile of Nifurtimox for Treatment of Chagas Disease in the United States. Clin. Infect. Dis. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, J.A.; de Mecca, M.M.; Bartel, L.C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol. 2006, 25, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Pecoul, B.; Batista, C.; Stobbaerts, E.; Ribeiro, I.; Vilasanjuan, R.; Gascon, J.; Pinazo, M.J.; Moriana, S.; Gold, S.; Pereiro, A.; et al. The BENEFIT Trial: Where Do We Go from Here? PLoS Negl. Trop. Dis. 2016, 10, e0004343. [Google Scholar] [CrossRef] [PubMed]
- Rassi, A., Jr.; Marin, J.A.N.; Rassi, A. Chronic Chagas cardiomyopathy: A review of the main pathogenic mechanisms and the efficacy of aetiological treatment following the BENznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT) trial. Mem. Inst. Oswaldo Cruz 2017, 112, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A., Jr.; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; et al. Randomized Trial of Benznidazole for Chronic Chagas’ Cardiomyopathy. New Engl. J. Med. 2015, 373, 1295–1306. [Google Scholar] [CrossRef] [Green Version]
- Cucunuba, Z.M.; Okuwoga, O.; Basanez, M.G.; Nouvellet, P. Increased mortality attributed to Chagas disease: A systematic review and meta-analysis. Parasites Vectors 2016, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Nadruz, W., Jr.; Gioli-Pereira, L.; Bernardez-Pereira, S.; Marcondes-Braga, F.G.; Fernandes-Silva, M.M.; Silvestre, O.M.; Sposito, A.C.; Ribeiro, A.L.; Bacal, F.; Fernandes, F.; et al. Temporal trends in the contribution of Chagas cardiomyopathy to mortality among patients with heart failure. Heart 2018, 104, 1522–1528. [Google Scholar] [CrossRef]
- Rassi, A., Jr.; Rassi, A.; Rassi, S.G. Predictors of mortality in chronic Chagas disease: A systematic review of observational studies. Circulation 2007, 115, 1101–1108. [Google Scholar]
- Dumonteil, E.; Bottazzi, M.E.; Zhan, B.; Heffernan, M.J.; Jones, K.; Valenzuela, J.G.; Kamhawi, S.; Ortega, J.; Rosales, S.P.; Lee, B.Y.; et al. Accelerating the development of a therapeutic vaccine for human Chagas disease: Rationale and prospects. Expert Rev. Vaccines 2012, 11, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.Y.; Bacon, K.M.; Wateska, A.R.; Bottazzi, M.E.; Dumonteil, E.; Hotez, P.J. Modeling the Economic Value of a Chagas’ Disease Therapeutic Vaccine. Hum. Vaccines Immunother. 2012, 8, 1293–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartsch, S.M.; Bottazzi, M.E.; Asti, L.; Strych, U.; Meymandi, S.; Falcon-Lezama, J.A.; Randall, S.; Hotez, P.J.; Lee, B.Y. Economic value of a therapeutic Chagas vaccine for indeterminate and Chagasic cardiomyopathy patients. Vaccine 2019, 37, 3704–3714. [Google Scholar] [CrossRef] [PubMed]
- Mott, K.E.; Mota, E.A.; Sherlock, I.; Hoff, R.; Muniz, T.M.; Oliveira, T.S.; Draper, C.C. Trypanosoma cruzi infection in dogs and cats and household seroreactivity to T. cruzi in a rural community in northeast Brazil. Am. J. Trop. Med. Hyg. 1978, 27, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Tenney, T.D.; Curtis-Robles, R.; Snowden, K.F.; Hamer, S.A. Shelter dogs as sentinels for Trypanosoma cruzi transmission across Texas. Emerg. Infect. Dis. 2014, 20, 1323–1326. [Google Scholar] [CrossRef]
- Gurtler, R.E.; Cecere, M.C.; Lauricella, M.A.; Cardinal, M.V.; Kitron, U.; Cohen, J.E. Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina. Parasitology 2007, 134, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Dumonteil, E.; Herrera, C.; Buekens, P. A therapeutic preconceptional vaccine against Chagas disease: A novel indication that could reduce congenital transmission and accelerate vaccine development. PLoS Negl. Trop. Dis. 2019, 13, e0006985. [Google Scholar] [CrossRef] [Green Version]
- Carlier, Y.; Sosa-Estani, S.; Luquetti, A.O.; Buekens, P. Congenital Chagas disease: An update. Mem. Inst. Oswaldo Cruz 2015, 110, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Howard, E.J.; Xiong, X.; Carlier, Y.; Sosa-Estani, S.; Buekens, P. Frequency of the congenital transmission of Trypanosoma cruzi: A systematic review and meta-analysis. BJOG 2014, 121, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Fabbro, D.L.; Danesi, E.; Olivera, V.; Codebo, M.O.; Denner, S.; Heredia, C.; Streiger, M.; Sosa-Estani, S. Trypanocide treatment of women infected with Trypanosoma cruzi and its effect on preventing congenital Chagas. PLoS Negl. Trop. Dis. 2014, 8, e3312. [Google Scholar] [CrossRef] [Green Version]
- Sosa-Estani, S.; Cura, E.; Velazquez, E.; Yampotis, C.; Segura, E.L. Etiological treatment of young women infected with Trypanosoma cruzi, and prevention of congenital transmission. Rev. Soc. Bras. Med. Trop. 2009, 42, 484–487. [Google Scholar] [CrossRef] [Green Version]
- Moscatelli, G.; Moroni, S.; Garcia-Bournissen, F.; Ballering, G.; Bisio, M.; Freilij, H.; Altcheh, J. Prevention of congenital Chagas through treatment of girls and women of childbearing age. Mem. Inst. Oswaldo Cruz 2015, 110, 507–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murcia, L.; Simon, M.; Carrilero, B.; Roig, M.; Segovia, M. Treatment of Infected Women of Childbearing Age Prevents Congenital Trypanosoma cruzi Infection by Eliminating the Parasitemia Detected by PCR. J. Infect. Dis. 2017, 215, 1452–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, M.G.; Vigliano, C.; Lococo, B.; Bertocchi, G.; Viotti, R. Prevention of congenital Chagas disease by Benznidazole treatment in reproductive-age women. An observational study. Acta Trop. 2017, 174, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Bern, C.; Montgomery, S.P.; Herwaldt, B.L.; Rassi, A., Jr.; Marin-Neto, J.A.; Dantas, R.O.; Maguire, J.H.; Acquatella, H.; Morillo, C.; Kirchhoff, L.V.; et al. Evaluation and treatment of chagas disease in the United States: A systematic review. JAMA 2007, 298, 2171–2181. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, S.M.; Stokes-Cawley, O.J.; Buekens, P.; Asti, L.; Bottazzi, M.E.; Strych, U.; Wedlock, P.T.; Mitgang, E.A.; Meymandi, S.; Falcon-Lezama, J.A.; et al. The potential economic value of a therapeutic Chagas disease vaccine for pregnant women to prevent congenital transmission. Vaccine 2020, 38, 3261–3270. [Google Scholar] [CrossRef]
- Quijano-Hernandez, I.; Dumonteil, E. Advances and challenges towards a vaccine against Chagas disease. Hum. Vaccines 2011, 7, 1184–1191. [Google Scholar] [CrossRef] [Green Version]
- Beaumier, C.M.; Gillespie, P.M.; Strych, U.; Hayward, T.; Hotez, P.J.; Bottazzi, M.E. Status of vaccine research and development of vaccines for Chagas disease. Vaccine 2016, 34, 2996–3000. [Google Scholar] [CrossRef]
- Cazorla, S.I.; Frank, F.M.; Malchiodi, E.L. Vaccination approaches against Trypanosoma cruzi infection. Expert Rev. Vaccines 2009, 8, 921–935. [Google Scholar] [CrossRef]
- Portillo, S.; Zepeda, B.G.; Iniguez, E.; Olivas, J.J.; Karimi, N.H.; Moreira, O.C.; Marques, A.F.; Michael, K.; Maldonado, R.A.; Almeida, I.C. A prophylactic alpha-Gal-based glycovaccine effectively protects against murine acute Chagas disease. NPJ Vaccines 2019, 4, 13. [Google Scholar] [CrossRef]
- Lokugamage, N.; Choudhuri, S.; Davies, C.; Chowdhury, I.H.; Garg, N.J. Antigen-Based Nano-Immunotherapy Controls Parasite Persistence, Inflammatory and Oxidative Stress, and Cardiac Fibrosis, the Hallmarks of Chronic Chagas Cardiomyopathy, in A Mouse Model of Trypanosoma cruzi Infection. Vaccines 2020, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Hegazy-Hassan, W.; Zepeda-Escobar, J.A.; Ochoa-Garcia, L.; Contreras-Ortiz, J.M.E.; Tenorio-Borroto, E.; Barbabosa-Pliego, A.; Aparicio-Burgos, J.E.; Oros-Pantoja, R.; Rivas-Santiago, B.; Diaz-Albiter, H.; et al. TcVac1 vaccine delivery by intradermal electroporation enhances vaccine induced immune protection against Trypanosoma cruzi infection in mice. Vaccine 2019, 37, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Cerny, N.; Bivona, A.E.; Sanchez Alberti, A.; Trinitario, S.N.; Morales, C.; Cardoso Landaburu, A.; Cazorla, S.I.; Malchiodi, E.L. Cruzipain and Its Physiological Inhibitor, Chagasin, as a DNA-Based Therapeutic Vaccine Against Trypanosoma cruzi. Front. Immunol. 2020, 11, 565142. [Google Scholar] [CrossRef] [PubMed]
- Teh-Poot, C.; Tzec-Arjona, E.; Martinez-Vega, P.; Ramirez-Sierra, M.J.; Rosado-Vallado, M.; Dumonteil, E. From genome screening to creation of vaccine against Trypanosoma cruzi by use of immunoinformatics. J. Infect. Dis. 2015, 211, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biter, A.B.; Weltje, S.; Hudspeth, E.M.; Seid, C.A.; McAtee, C.P.; Chen, W.H.; Pollet, J.B.; Strych, U.; Hotez, P.J.; Bottazzi, M.E. Characterization and Stability of Trypanosoma cruzi 24-C4 (Tc24-C4), a Candidate Antigen for a Therapeutic Vaccine against Chagas Disease. J. Pharm. Sci. 2018, 107, 1468–1473. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz, J.J.; Villanueva-Lizama, L.; Dzul-Huchim, V.; Ramírez-Sierra, M.J.; Martinez-Vega, P.; Rosado-Vallado, M.; Ortega-Lopez, J.; Flores-Pucheta, C.I.; Gillespie, P.; Zhan, B.; et al. Production of recombinant TSA-1 and evaluation of its potential for the immuno-therapeutic control of Trypanosoma cruzi infection in mice. Hum. Vaccines Immunother. 2019, 15, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Campos, V.; Martinez-Vega, P.; Ramirez-Sierra, M.J.; Rosado-Vallado, M.; Seid, C.A.; Hudspeth, E.M.; Wei, J.; Liu, Z.; Kwityn, C.; Hammond, M.; et al. Expression, purification, immunogenicity, and protective efficacy of a recombinant Tc24 antigen as a vaccine against Trypanosoma cruzi infection in mice. Vaccine 2015, 33, 4505–4512. [Google Scholar] [CrossRef]
- Barry, M.A.; Wang, Q.; Jones, K.M.; Heffernan, M.J.; Buhaya, M.H.; Beaumier, C.M.; Keegan, B.P.; Zhan, B.; Dumonteil, E.; Bottazzi, M.E.; et al. A therapeutic nanoparticle vaccine against Trypanosoma cruzi in a BALB/c mouse model of Chagas disease. Hum. Vaccines Immunother. 2016, 12, 976–987. [Google Scholar] [CrossRef] [Green Version]
- Barry, M.A.; Versteeg, L.; Wang, Q.; Pollet, J.; Zhan, B.; Gusovsky, F.; Bottazzi, M.E.; Hotez, P.J.; Jones, K.M. A therapeutic vaccine prototype induces protective immunity and reduces cardiac fibrosis in a mouse model of chronic Trypanosoma cruzi infection. PLoS Negl. Trop. Dis. 2019, 13, e0007413. [Google Scholar] [CrossRef]
- Jones, K.; Versteeg, L.; Damania, A.; Keegan, B.; Kendricks, A.; Pollet, J.; Cruz-Chan, J.V.; Gusovsky, F.; Hotez, P.J.; Bottazzi, M.E. Vaccine-Linked Chemotherapy Improves Benznidazole Efficacy for Acute Chagas Disease. Infect. Immun. 2018, 86. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, F.A.P.; Pontes, C.; Gazzinelli, R.T.; Romero, O.B.; Lazzarin, M.C.; Dos Santos, J.F.; de Oliveira, F.; Pisani, L.P.; de Vasconcelos, J.R.C.; Ribeiro, D.A. Therapeutic effects of vaccine derived from amastigote surface protein-2 (ASP-2) against Chagas disease in mouse liver. Cytokine 2019, 113, 285–290. [Google Scholar] [CrossRef]
- Pereira, I.R.; Vilar-Pereira, G.; Marques, V.; da Silva, A.A.; Caetano, B.; Moreira, O.C.; Machado, A.V.; Bruna-Romero, O.; Rodrigues, M.M.; Gazzinelli, R.T.; et al. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. PLoS Pathog. 2015, 11, e1004594. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.S.; Francisco, A.F.; Jayawardhana, S.; Taylor, M.C.; Lewis, M.D.; Olmo, F.; de Freitas, E.O.; Leoratti, F.M.S.; Lopez-Camacho, C.; Reyes-Sandoval, A.; et al. Drug-cured experimental Trypanosoma cruzi infections confer long-lasting and cross-strain protection. PLoS Negl. Trop. Dis. 2020, 14, e0007717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, T.; Guerrero-Ros, I.; Ma, Y.; Matos Dos Santos, F.; Scherer, P.E.; Gordillo, R.; Horta, A.; Macian, F.; Weiss, L.M.; Huang, H. Induction of Effective Immunity against Trypanosoma cruzi. Infect. Immun. 2020, 88. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Weiss, L.M.; Huang, H. Inducible suicide vector systems for Trypanosoma cruzi. Microbes Infect. 2015, 17, 440–450. [Google Scholar] [CrossRef]
- Perez Brandan, C.; Mesias, A.C.; Parodi, C.; Cimino, R.O.; Perez Brandan, C.; Diosque, P.; Basombrio, M.A. Effects of IFN-gamma coding plasmid supplementation in the immune response and protection elicited by Trypanosoma cruzi attenuated parasites. BMC Infect. Dis. 2017, 17, 732. [Google Scholar] [CrossRef]
- Gupta, S.; Salgado-Jimenez, B.; Lokugamage, N.; Vazquez-Chagoyan, J.C.; Garg, N.J. TcG2/TcG4 DNA Vaccine Induces Th1 Immunity Against Acute Trypanosoma cruzi Infection: Adjuvant and Antigenic Effects of Heterologous T. rangeli Booster Immunization. Front. Immunol. 2019, 10, 1456. [Google Scholar] [CrossRef]
- Cerny, N.; Sanchez Alberti, A.; Bivona, A.E.; De Marzi, M.C.; Frank, F.M.; Cazorla, S.I.; Malchiodi, E.L. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection. Hum. Vaccines Immunother. 2016, 12, 438–450. [Google Scholar] [CrossRef] [Green Version]
- Cazorla, S.I.; Matos, M.N.; Cerny, N.; Ramirez, C.; Alberti, A.S.; Bivona, A.E.; Morales, C.; Guzman, C.A.; Malchiodi, E.L. Oral multicomponent DNA vaccine delivered by attenuated Salmonella elicited immunoprotection against American trypanosomiasis. J. Infect. Dis. 2015, 211, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Antonoglou, M.B.; Sanchez Alberti, A.; Redolfi, D.M.; Bivona, A.E.; Fernandez Lynch, M.J.; Noli Truant, S.; Sarratea, M.B.; Iannantuono Lopez, L.V.; Malchiodi, E.L.; Fernandez, M.M. Heterologous Chimeric Construct Comprising a Modified Bacterial Superantigen and a Cruzipain Domain Confers Protection Against Trypanosoma cruzi Infection. Front. Immunol. 2020, 11, 1279. [Google Scholar] [CrossRef]
- Sanchez Alberti, A.; Bivona, A.E.; Matos, M.N.; Cerny, N.; Schulze, K.; Weissmann, S.; Ebensen, T.; Gonzalez, G.; Morales, C.; Cardoso, A.C.; et al. Mucosal Heterologous Prime/Boost Vaccination Induces Polyfunctional Systemic Immunity, Improving Protection Against Trypanosoma cruzi. Front. Immunol. 2020, 11, 128. [Google Scholar] [CrossRef] [Green Version]
- Matos, M.N.; Cazorla, S.I.; Schulze, K.; Ebensen, T.; Guzman, C.A.; Malchiodi, E.L. Immunization with Tc52 or its amino terminal domain adjuvanted with c-di-AMP induces Th17+Th1 specific immune responses and confers protection against Trypanosoma cruzi. PLoS Negl. Trop. Dis. 2017, 11, e0005300. [Google Scholar] [CrossRef] [PubMed]
- Arce-Fonseca, M.; González-Vázquez, M.C.; Rodríguez-Morales, O.; Graullera-Rivera, V.; Aranda-Fraustro, A.; Reyes, P.A.; Carabarin-Lima, A.; Rosales-Encina, J.L. Recombinant Enolase of Trypanosoma cruzi as a Novel Vaccine Candidate against Chagas Disease in a Mouse Model of Acute Infection. J. Immunol. Res. 2018, 2018, 8964085. [Google Scholar] [CrossRef] [Green Version]
- Prochetto, E.; Roldan, C.; Bontempi, I.A.; Bertona, D.; Peverengo, L.; Vicco, M.H.; Rodeles, L.M.; Perez, A.R.; Marcipar, I.S.; Cabrera, G. Trans-sialidase-based vaccine candidate protects against Trypanosoma cruzi infection, not only inducing an effector immune response but also affecting cells with regulatory/suppressor phenotype. Oncotarget 2017, 8, 58003–58020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bontempi, I.A.; Vicco, M.H.; Cabrera, G.; Villar, S.R.; Gonzalez, F.B.; Roggero, E.A.; Ameloot, P.; Callewaert, N.; Perez, A.R.; Marcipar, I.S. Efficacy of a trans-sialidase-ISCOMATRIX subunit vaccine candidate to protect against experimental Chagas disease. Vaccine 2015, 33, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Bontempi, I.; Leal, K.; Prochetto, E.; Díaz, G.; Cabrera, G.; Bortolotti, A.; Morbidoni, H.R.; Borsuk, S.; Dellagostin, O.; Marcipar, I. Recombinant Mycobacterium bovis BCG is a promising platform to develop vaccines against Trypansoma cruzi infection. Clin. Exp. Immunol. 2020, 201, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Alberti, A.; Bivona, A.E.; Cerny, N.; Schulze, K.; Weissmann, S.; Ebensen, T.; Morales, C.; Padilla, A.M.; Cazorla, S.I.; Tarleton, R.L.; et al. Engineered trivalent immunogen adjuvanted with a STING agonist confers protection against Trypanosoma cruzi infection. NPJ Vaccines 2017, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Bivona, A.E.; Sanchez Alberti, A.; Matos, M.N.; Cerny, N.; Cardoso, A.C.; Morales, C.; Gonzalez, G.; Cazorla, S.I.; Malchiodi, E.L. Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a novel immunogen for Chagas disease vaccine. PLoS Negl. Trop. Dis. 2018, 12, e0006384. [Google Scholar] [CrossRef]
- Matos, M.N.; Sanchez Alberti, A.; Morales, C.; Cazorla, S.I.; Malchiodi, E.L. A prime-boost immunization with Tc52 N-terminal domain DNA and the recombinant protein expressed in Pichia pastoris protects against Trypanosoma cruzi infection. Vaccine 2016, 34, 3243–3251. [Google Scholar] [CrossRef]
- Gupta, S.; Garg, N.J. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi. PLoS Pathog. 2015, 11, e1004828. [Google Scholar] [CrossRef] [Green Version]
- Kotliarov, Y.; Sparks, R.; Martins, A.J.; Mule, M.P.; Lu, Y.; Goswami, M.; Kardava, L.; Banchereau, R.; Pascual, V.; Biancotto, A.; et al. Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus. Nat. Med. 2020, 26, 618–629. [Google Scholar] [CrossRef]
- Moncunill, G.; Scholzen, A.; Mpina, M.; Nhabomba, A.; Hounkpatin, A.B.; Osaba, L.; Valls, R.; Campo, J.J.; Sanz, H.; Jairoce, C.; et al. Antigen-stimulated PBMC transcriptional protective signatures for malaria immunization. Sci. Transl. Med. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Hipc-Chi Signatures Project Team. Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Sci. Immunol. 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Machado, A.V.; Cardoso, J.E.; Claser, C.; Rodrigues, M.M.; Gazzinelli, R.T.; Bruna-Romero, O. Long-term protective immunity induced against Trypanosoma cruzi infection after vaccination with recombinant adenoviruses encoding amastigote surface protein-2 and trans-sialidase. Hum. Gene 2006, 17, 898–908. [Google Scholar]
- Haolla, F.A.; Claser, C.; de Alencar, B.C.; Tzelepis, F.; de Vasconcelos, J.R.; de Oliveira, G.; Silverio, J.C.; Machado, A.V.; Lannes-Vieira, J.; Bruna-Romero, O.; et al. Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection. Vaccine 2009, 27, 5644–5653. [Google Scholar] [CrossRef] [PubMed]
- Flores-Ferrer, A.; Marcou, O.; Waleckx, E.; Dumonteil, E.; Gourbière, S. Evolutionary ecology of Chagas disease; what do we know and what do we need? Evol. Appl. 2017, 11, 470–487. [Google Scholar] [CrossRef]
- Zingales, B.; Andrade, S.G.; Briones, M.R.; Campbell, D.A.; Chiari, E.; Fernandes, O.; Guhl, F.; Lages-Silva, E.; Macedo, A.M.; Machado, C.R.; et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz 2009, 104, 1051–1054. [Google Scholar] [CrossRef]
- Knight, J.M.; Zingales, B.; Bottazzi, M.E.; Hotez, P.; Zhan, B. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1. Parasite Immunol. 2014, 36, 708–712. [Google Scholar] [CrossRef]
- Arnal, A.; Villanueva-Lizama, L.; Teh-Poot, C.; Herrera, C.; Dumonteil, E. Extent of polymorphism and selection pressure on the Trypanosoma cruzi vaccine candidate antigen Tc24. Evol. Appl. 2020, 13, 2663–2672. [Google Scholar] [CrossRef]
- Monje-Rumi, M.M.; Brandan, C.P.; Ragone, P.G.; Tomasini, N.; Lauthier, J.J.; Alberti D’Amato, A.M.; Cimino, R.O.; Orellana, V.; Basombrio, M.A.; Diosque, P. Trypanosoma cruzi diversity in the Gran Chaco: Mixed infections and differential host distribution of TcV and TcVI. Infect. Genet. Evol. 2015, 29, 53–59. [Google Scholar] [CrossRef]
- Martinez-Perez, A.; Poveda, C.; Ramirez, J.D.; Norman, F.; Girones, N.; Guhl, F.; Monge-Maillo, B.; Fresno, M.; Lopez-Velez, R. Prevalence of Trypanosoma cruzi’s Discrete Typing Units in a cohort of Latin American migrants in Spain. Acta Trop. 2016, 157, 145–150. [Google Scholar] [CrossRef]
- Villanueva-Lizama, L.; Teh-Poot, C.; Majeau, A.; Herrera, C.; Dumonteil, E. Molecular genotyping of Trypanosoma cruzi by next-generation sequencing of the mini-exon gene reveals infections with multiple parasite DTUs in Chagasic patients from Yucatan, Mexico. J. Inf. Dis. 2019, 219, 1980–1988. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.M.; Rivarola, H.W.; Fernandez, A.R.; Enders, J.E.; Fretes, R.; Palma, J.A.; Paglini-Oliva, P.A. Trypanosoma cruzi reinfections in mice determine the severity of cardiac damage. Int. J. Parasitol. 2002, 32, 889–896. [Google Scholar] [CrossRef]
- Martins, H.R.; Toledo, M.J.; Veloso, V.M.; Carneiro, C.M.; Machado-Coelho, G.L.; Tafuri, W.L.; Bahia, M.T.; Valadares, H.M.; Macedo, A.M.; Lana, M. Trypanosoma cruzi: Impact of dual-clone infections on parasite biological properties in BALB/c mice. Exp. Parasitol. 2006, 112, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragone, P.G.; Perez Brandan, C.; Monje Rumi, M.; Tomasini, N.; Lauthier, J.J.; Cimino, R.O.; Uncos, A.; Ramos, F.; Alberti D’Amato, A.M.; Basombrio, M.A.; et al. Experimental evidence of biological interactions among different isolates of Trypanosoma cruzi from the Chaco Region. PLoS ONE 2015, 10, e0119866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomasini, N.; Ragone, P.G.; Gourbiere, S.; Aparicio, J.P.; Diosque, P. Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans. PLoS Comput. Biol. 2017, 13, e1005532. [Google Scholar] [CrossRef] [Green Version]
- Aparicio-Burgos, J.E.; Ochoa-Garcia, L.; Zepeda-Escobar, J.A.; Gupta, S.; Dhiman, M.; Martinez, J.S.; de Oca-Jimenez, R.M.; Arreola, M.V.; Barbabosa-Pliego, A.; Vazquez-Chagoyan, J.C.; et al. Testing the efficacy of a multi-component DNA-prime/DNA-boost vaccine against Trypanosoma cruzi infection in dogs. PLoS Negl. Trop. Dis. 2011, 5, e1050. [Google Scholar] [CrossRef]
- Aparicio-Burgos, J.E.; Zepeda-Escobar, J.A.; de Oca-Jimenez, R.M.; Estrada-Franco, J.G.; Barbabosa-Pliego, A.; Ochoa-Garcia, L.; Alejandre-Aguilar, R.; Rivas, N.; Penuelas-Rivas, G.; Val-Arreola, M.; et al. Immune protection against Trypanosoma cruzi induced by TcVac4 in a canine model. PLoS Negl. Trop. Dis. 2015, 9, e0003625. [Google Scholar] [CrossRef]
- Quijano-Hernandez, I.A.; Castro-Barcena, A.; Vazquez-Chagoyan, J.C.; Bolio-Gonzalez, M.E.; Ortega-Lopez, J.; Dumonteil, E. Preventive and therapeutic DNA vaccination partially protect dogs against an infectious challenge with Trypanosoma cruzi. Vaccine 2013, 31, 2246–2252. [Google Scholar] [CrossRef]
- Arce-Fonseca, M.; Carbajal-Hernandez, A.C.; Lozano-Camacho, M.; Carrillo-Sanchez, S.D.C.; Roldan, F.J.; Aranda-Fraustro, A.; Rosales-Encina, J.L.; Rodriguez-Morales, O. DNA Vaccine Treatment in Dogs Experimentally Infected with Trypanosoma cruzi. J. Immunol. Res. 2020, 2020, 9794575. [Google Scholar] [CrossRef]
- Rodriguez-Morales, O.; Roldan, F.J.; Vargas-Barron, J.; Parra-Benitez, E.; Medina-Garcia, M.L.; Vergara-Bello, E.; Arce-Fonseca, M. Echocardiographic Findings in Canine Model of Chagas Disease Immunized with DNA Trypanosoma cruzi Genes. Animals 2020, 10, 648. [Google Scholar] [CrossRef] [Green Version]
- Basso, B.; Castro, I.; Introini, V.; Gil, P.; Truyens, C.; Moretti, E. Vaccination with Trypanosoma rangeli reduces the infectiousness of dogs experimentally infected with Trypanosoma cruzi. Vaccine 2007, 25, 3855–3858. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Lizama, L.; Cruz-Chan, J.V.; Cetina-Aguilar, A.C.; Herrera-Sanchez, L.F.; Rodriguez-Perez, J.M.; Rosado-Vallado, M.E.; Ramirez-Sierra, M.J.; Ortega-Lopez, J.; Jones, K.; Hotez, P.; et al. Trypanosoma cruzi vaccine candidate antigens Tc24 and TSA-1 recall memory immune response associated with HLA-A and –B supertypes in Chagasic chronic patients from Mexico. PLoS Negl. Trop. Dis. 2018, 12, e0006240. [Google Scholar] [CrossRef] [PubMed]
- Dumonteil, E.; Herrera, C.; Tu, W.; Goff, K.; Fahlberg, M.; Haupt, E.; Kaur, A.; Marx, P.A.; Ortega-Lopez, J.; Hotez, P.J.; et al. Safety and immunogenicity of a recombinant vaccine against Trypanosoma cruzi in Rhesus macaques. Vaccine 2020, 38, 4584–4591. [Google Scholar] [CrossRef] [PubMed]
- Seid, C.A.; Jones, K.M.; Pollet, J.; Keegan, B.; Hudspeth, E.; Hammond, M.; Wei, J.; McAtee, C.P.; Versteeg, L.; Gutierrez, A.; et al. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease. Hum. Vaccines Immunother. 2017, 13, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Gunter, S.M.; Jones, K.M.; Seid, C.A.; Essigmann, H.T.; Zhan, B.; Strych, U.; Bottazzi, M.E.; Hotez, P.J.; Brown, E.L. Mutations to Cysteine Residues in the Trypanosoma cruzi B-Cell Superantigen Tc24 Diminish Susceptibility to IgM-Mediated Hydrolysis. J. Parasitol. 2017, 103, 579–583. [Google Scholar] [CrossRef]
- Suschak, J.J.; Williams, J.A.; Schmaljohn, C.S. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum. Vaccines Immunother. 2017, 13, 2837–2848. [Google Scholar] [CrossRef] [Green Version]
- Fougeroux, C.; Holst, P.J. Future Prospects for the Development of Cost-Effective Adenovirus Vaccines. Int. J. Mol. Sci. 2017, 18, 686. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, S.P.; McElrath, M.J.; Dieffenbach, C.; Corey, L. Use of adenovirus type-5 vectored vaccines: A cautionary tale. Lancet 2020, 396, e68–e69. [Google Scholar] [CrossRef]
- Lee, B.Y.; Bacon, K.M.; Bottazzi, M.E.; Hotez, P.J. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect. Dis. 2013, 13, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Dibner, M.S.; Wilson, A. Development of and access to products for neglected diseases. PLoS ONE 2010, 5, e10610. [Google Scholar] [CrossRef] [Green Version]
- Hotez, P.J.; Dumonteil, E.; Heffernan, M.J.; Bottazzi, M.E. Innovation for the ‘Bottom 100 million’: Eliminating neglected tropical diseases in the Americas. Adv. Exp. Med. Biol. 2013, 764, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chapman, N.; Doubell, A.; Barnsley, P.; Goldstein, M.; Oversteegen, L.; Chowdhary, V.; Rugarabamu, G.; Ong, M.; Borri, J.; Hynen, A.; et al. G-FINDER: Neglected Diseases Research and Development: Uneven Progress; Policy Cures Research: Sydney, Australia, 2019; p. 140. [Google Scholar]
Antigens and Use | Adjuvants and Delivery Systems | Immune Response | Efficacy Against Parasite | Efficacy Against Cardiac Damage and Dysfunction | References | |
---|---|---|---|---|---|---|
Therapeutic vaccines | ||||||
DNA | TcG2+TcG4, therapeutic during acute phase | Plasmids or nano plasmids | CD4+ and CD8+ producing IFNg, PRF, and GRZ | Decreased parasite burden in cardiac and skeletal muscle | Decrease in fibrosis in heart and skeletal muscle, decrease in oxidative stress | [40,41] |
DNA | Cruzipain and Chagasin plasmids with Salmonella carrier, therapeutic during acute phase | GM-CSF expression plasmid | Increased IFNγ and antibodies | Decreased parasite burden in blood and heart, and increased survival | Decreased cardiac inflammation | [42] |
Peptides | 10 peptide epitopes mixture, therapeutic during acute phase | TLR4 agonist (MPLA) | Increased IFNγ | Decreased cardiac parasite burden, increased survival | N/A | [43] |
Recombinant proteins | Tc24, TSA-1 and their optimized variants, therapeutic during acute phase | TLR4 agonists (E6020, MPLA, GLA), TLR9 agonist (CpG), nanoparticles | Antibodies, IFNγ, and CD4+ and CD8+ activation | Decreased cardiac parasite burden, increased survival | Decrease in cardiac inflammation and fibrosis | [44,45,46,47] |
Recombinant proteins | Tc24, therapeutic during chronic phase | TLR4 agonists (E6020) | High IFNγ and low IL4, and antibodies | Decreased parasitemia | Decrease in cardiac inflammation and fibrosis | [48] |
Recombinant proteins | Tc24-C4, therapeutic combined with low dose Benznidazole | TLR4 agonist (E6020) | Increased IFNγ, IL12, TNFa, IL2, IL4 and IL10, and CD4+ and CD8+ T cell activation | Decreased parasitemia, increased survival | N/A | [49] |
Viral vectors | Recombinant Adenovirus expression ASP2, therapeutic during acute phase | TNFa, iNOS, TLR4, and IL-10 expression in the liver | Increased survival, decreased parasite burden in liver | N/A | [50] | |
Viral vectors | Recombinant adenovirus expressing ASP2 and TS, therapeutic during chronic phase | IFNγ and CD8+ T cells | Increased survival | Decreased cardiac fibrosis and dysfunction | [51] | |
Preventative vaccines | ||||||
Live parasites | Drug-cured primary infection, preventative | N/A | N/A | Sustained decrease in parasite burden in all body | N/A | [52] |
Live parasites | Live attenuated parasite (inducible expression of alpha-toxin, and cecropin A), preventative | N/A | IFNγ, TNFa, CD4+ and CD8+ T cell activation, antibodies, and NK cells | No detectable parasites | Decrease in cardiac inflammation | [53,54] |
Live parasites | Live attenuated parasite (TCC attenuated strain), preventative short term | IFNγ expressing plasmid | Antibodies and mixed Th1/Th2 response | Decreased parasitemia and increased survival | N/A | [55] |
DNA | TcG2+TcG4, preventative short term | Plasmids alone or with Trypanosoma rangeli and/or Quil A as adjuvants | Antibodies, CD4+ and CD8+ producing IFNγ, TNFa, and PRF | Decreased parasite burden in cardiac and skeletal muscle | [56] | |
DNA | Cruzipain plasmid, preventative short term | GM-CSF plasmid | Antibodies and DTH | Decreased parasitemia, increased survival | Decreased cardiac tissue damage | [57] |
DNA | Cruzipain, Tc52, Tc24 plasmids, preventative short term | Salmonella enterica carrier | Trypanolytic antibodies, DTH, IFNγ, IL12, and IL10 | Decreased parasitemia, increased survival | Decreased cardiac tissue inflammation, necrosis | [58] |
Recombinant proteins | Cruzipain fused with staphylococcal superantigen, preventative short term | TLR9 agonist (CpG) | Neutralizing antibodies and DTH | Decreased parasitemia and increased survival | N/A | [59] |
Recombinant proteins | Recombinant Traspain, Cruzipain and ASP-2 fusion protein, preventative short term | c-di-AMP adjuvant (STING agonist) | Neutralizing antibodies, CD4+ and CD8+ T cell activation, IFNγ, TNFa, IL2, and IL17 | Decreased parasitemia and increased survival | Decreased cardiac damage (CK, CK-MB), decreased necrosis and inflammation in the heart and skeletal muscle | [60] |
Recombinant proteins | Recombinant Tc52 fragment, preventative short term | c-di-AMP adjuvant (STING agonist) | Antibodies, CD4+ and CD8+ T cell activation, IFNγ, and IL17 | Decreased parasitemia and increased survival | N/A | [61] |
Recombinant proteins | TcTASV, preventative short term | Unlipidated Outer Membrane Protein 19 of Brucella abortus (U-Omp19) as adjuvant | Trypanolytic antibodies, IFNγ, and IL17 | Decreased parasitemia and increased survival | N/A | [59] |
Recombinant proteins | Enolase, preventative short term | Freund complete/incomplete adjuvant | Antibodies, IFNγ, and IL2 | Decreased parasitemia and increased survival | Decreased cardiac and skeletal muscle inflammation | [62] |
Recombinant proteins | Trans-Sialidase fragment, Preventative short term | ISPA lipidic cages, ISCOMATRIX, or Freund adjuvant | Trypanolytic antibodies, IFNγ, CD4+ and CD8+ T cell activation, Treg activation | Decreased cardiac parasite burden, increased survival | Decreased cardiac inflammation | [63,64] |
Glycotope | αGal glycotope, preventative short term | TLR4 agonist (Liposomal-monophosphoryl lipid A) | Trypanolytic antibodies, CD4+ and CD8+ T cell activation | Decreased parasite burden in multiple tissues, increased survival | Decreased cardiac inflammation and necrosis | [39] |
Viral vectors | Recombinant Adenovirus and modified Vaccinia Ankara virus expressing ASP-2 and Trans-sialidase, preventative vaccination | PBS | Decreased parasite burden during the acute phase in all body, but no impact on long-term burden during chronic phase | N/A | [52] | |
Bacterial vectors | Recombinant Mycobacterium bovis (BCG) expressing trans-sialidase and cruzipain fragments, preventative short term | Trypanolytic antibodies, and DTH, CD4+ expressing IFNγ, IL17, IL10, and CD8+ | Increased survival | Decreased cardiac inflammation and fibrosis | [65] | |
Heterologous prime-boost combination | Salmonella enterica expressing Traspain and ASP-2 | TLR9 agonist (CpG) | Increased IFNγ, IL17, low IL4, CD4+, and CD8+ T cell activation | Decreased parasite burden in blood, heart and skeletal muscle, and increased survival | Decreased inflammation and improved EKG | [66] |
Heterologous prime-boost combination | Recombinant 80 kDa prolyl oligopeptidase (Tc80) and plasmid DNA | TLR9 agonist (CpG) | Increased IFNγ, IL2, TNFa, CD4+, and CD8+ T cell activation | Decreased parasitemia, and increased survival | Decreased cardiac inflammation, damage (CK and CK-MB), improved EKG | [67] |
Heterologous prime-boost combination | Recombinant Tc52 and plasmid DNA with Salmonella carrier, preventative short term | TLR9 agonist (CpG) | Trypanoplytic antibodies, Increased IFNγ, IL10, CD4+, and CD8+ T cell activation | Decreased parasitemia, and increased survival | Decreased cardiac inflammation | [68] |
Heterologous prime-boost combination | TcG1, TcG2, and TcG4 expression plasmids and recombinant proteins, preventative long term | IL2 and GM-CSF plasmids | Increased IFNγ, TNFa, CD4+ and CD8+ T cell activation | N/A | N/A | [69] |
Vaccine Type | Ease of Production | Clinical Development * | Potential Issues |
---|---|---|---|
Attenuated | Variable | 140 Phase 1 71 Phase 2 43 Phase 3 | Reversal of attenuation, storage, and distribution of a live vaccine |
DNA | ++++ | 207 Phase 1 61 Phase 2 0 Phase 3 | Limited immunogenicity in humans |
Adenovirus | +++ | 69 Phase 1 21 Phase 2 1 Phase 3 | Risk of adverse effects and immunity to vector |
Recombinant proteins | ++++ or variable | 195 Phase 1 76 Phase 2 55 Phase 3 | Most widely accepted, safe and immunogenic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumonteil, E.; Herrera, C. The Case for the Development of a Chagas Disease Vaccine: Why? How? When? Trop. Med. Infect. Dis. 2021, 6, 16. https://doi.org/10.3390/tropicalmed6010016
Dumonteil E, Herrera C. The Case for the Development of a Chagas Disease Vaccine: Why? How? When? Tropical Medicine and Infectious Disease. 2021; 6(1):16. https://doi.org/10.3390/tropicalmed6010016
Chicago/Turabian StyleDumonteil, Eric, and Claudia Herrera. 2021. "The Case for the Development of a Chagas Disease Vaccine: Why? How? When?" Tropical Medicine and Infectious Disease 6, no. 1: 16. https://doi.org/10.3390/tropicalmed6010016