Ability-Based Methods for Personalized Keyboard Generation
Abstract
:1. Introduction
1.1. Motivation
1.2. Ability-Based Design for AAC
1.3. Current Investigation
2. Materials and Methods
2.1. Keyboard Personalization
2.1.1. Movement Characterization
2.1.2. Personalized Keyboard Generation
2.2. Keyboard Evaluation
2.2.1. Experimental Overview
2.2.2. Participants
2.2.3. Sessions
2.2.4. Access Method Setup and Calibration
2.2.5. Virtual Interface Setup and Evaluation
2.3. Data Analysis
3. Results
3.1. Movement Characterization
3.2. Optimized vs. Personalized Keyboards
3.2.1. Target Selection Accuracy
3.2.2. WPM
3.2.3. ITR
3.3. Personalized vs. QWERTY Keyboards
4. Discussion
4.1. Movement Characterization
4.2. Keyboard Communication
4.2.1. Optimized vs. Personalized Keyboards
4.2.2. Personalized vs. QWERTY Keyboards
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brandenburg, C.; Worrall, L.; Rodriguez, A.D.; Copland, D. Mobile computing technology and aphasia: An integrated review of accessibility and potential uses. Aphasiolog 2013, 27, 444–461. [Google Scholar] [CrossRef]
- Díaz-Bossini, J.-M.; Moreno, L. Accessibility to Mobile Interfaces for Older People. Procedia Comput. Sci. 2014, 27, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Huijbregts, T.; Wallace, J.R. TalkingTiles: Supporting Personalization and Customization in an AAC App for individuals with Aphasia. In Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces, Online, 15–18 November 2015; ACM: Madeira, Portugal, 2015; pp. 63–72. [Google Scholar]
- Wu, J.; Reyes, G.; White, S.C.; Zhang, X.; Bigham, J.P. When can accessibility help?: An exploration of accessibility feature recommendation on mobile devices. In Proceedings of the 18th International Web for All Conference, Online, 19–20 April 2021; ACM: Ljubljana, Slovenia, 2021; pp. 1–12. [Google Scholar]
- Mcnaughton, D.; Bryen, D.N. AAC technologies to enhance participation and access to meaningful societal roles for adolescents and adults with developmental disabilities who require AAC. Augment. Altern. Commun. 2007, 23, 217–229. [Google Scholar] [CrossRef]
- Higginbotham, D.J.; Shane, H.; Russell, S.; Caves, K. Access to AAC: Present, past, and future. Augment. Altern. Commun. 2007, 23, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Zinkevich, A.; Uthoff, S.A.K.; Boenisch, J.; Sachse, S.K.; Bernasconi, T.; Ansmann, L. Complex intervention in augmentative and alternative communication (AAC) care in Germany: A study protocol of an evaluation study with a controlled mixed-methods design. BMJ Open 2019, 9, 029469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fried-Oken, M.; Mooney, A.; Peters, B. Supporting communication for patients with neurodegenerative disease. Neuro. Rehabil. 2015, 37, 87. [Google Scholar] [CrossRef] [PubMed]
- Hodge, S. Why is the potential of augmentative and alternative communication not being realized? Exploring the experiences of people who use communication aids. Disabil. Soc. 2007, 22, 457–471. [Google Scholar] [CrossRef]
- Fager, S.K.; Burnfield, J.M.; Pfeifer, C.M.; Sorenson, T. Perceived importance of AAC messages to support communication in rehabilitation settings. Disabil. Rehabil. Assist. Technol. 2020, 16, 796–801. [Google Scholar] [CrossRef]
- Elsahar, Y.; Hu, S.; Bouazza-Marouf, K.; Kerr, D.; Mansor, A. Augmentative and Alternative Communication (AAC) Advances: A Review of Configurations for Individuals with a Speech Disability. Sensors 2019, 22, 1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.; Nguyen, A.; Dhillon, S.; Cordero, K.; Church, A.; Firme, S. Key AAC Issues. 2018. Available online: https://ussaac.org/speakup/articles/key-aac-issues/ (accessed on 11 July 2022).
- Johnson, A.A. Factors Related to the Rejection and/or Abandonment of AAC Devices Recommended Citation; University of New Hampshire: Durham, UK, 2008. [Google Scholar]
- Zhai, S.; Hunter, M.; Smith, B.A. Performance Optimization of Virtual Keyboards. Hum. Comput. Interact 2002, 17, 229–269. [Google Scholar]
- Raynal, M.; Vigouroux, N. Genetic Algorithm to Generate Optimized Soft Keyboard. In Proceedings of the CHI ’05 Extended Abstracts on Human Factors in Computing Systems, Online, 2–7 April 2005; ACM: Portland, OR, USA, 2005; pp. 1729–1732. [Google Scholar]
- Zhai, S.; Hunter, M.; Smith, B.A. The Metropolis Keyboard-An Exploration of Quantitative Techniques for Virtual Keyboard Design. In Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology, Online, 6–8 November 2000; ACM: San Diego, CA, USA, 2000; pp. 119–128. [Google Scholar]
- Bailly, G.; Oulasvirta, A.; Kötzing, T.; Hoppe, S. MenuOptimizer: Interactive Optimization of Menu Systems. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, Online, 8–11 October 2013; ACM: Scotland, UK, 2013; pp. 331–342. [Google Scholar]
- Cler, G.J.; Kolin, K.R.; Noordzij, J.P.; Vojtech, J.M.; Fager, S.K.; Stepp, C.E. Optimized and predictive phonemic interfaces for augmentative and alternative communication. J. Speech Lang. Hear. Res. 2019, 62, 2065–2081. [Google Scholar] [CrossRef] [PubMed]
- Wobbrock, J.O.; Kane, S.K.; Gajos, K.Z.; Harada, S.; Froehlich, J. Ability-based design: Concept, principles and examples. ACM Trans. Access Comput. 2011, 3, 1–27. [Google Scholar] [CrossRef]
- Wobbrock, J.O.; Gajos, K.Z.; Kane, S.K.; Vanderheiden, G.C. Ability-Based Design. Commun ACM. 2018, 61, 62–71. [Google Scholar] [CrossRef]
- Gajos, K.Z.; Weld, D.S.; Wobbrock, J.O. Automatically generating personalized user interfaces with SUPPLE. Artif. Intell. 2010, 174, 910–950. [Google Scholar] [CrossRef] [Green Version]
- Sarcar, S.; Jokinen, J.P.; Oulasvirta, A.; Wang, Z.; Silpasuwanchai, C.; Ren, X. Ability-Based Optimization of Touchscreen Interactions. IEEE Pervasive Comput. 2018, 17, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Kazandjian, M.; Dikeman, K. Guillain-Barre Syndrome and Disordered Swallowing. Perspect. Swallowing Disord. 2012, 21, 115–120. [Google Scholar] [CrossRef]
- Makkonen, T.; Ruottinen, H.; Puhto, R.; Helminen, M.; Palmio, J. Speech deterioration in amyotrophic lateral sclerosis (ALS) after manifestation of bulbar symptoms. Int. J. Lang. Commun. Disord. 2018, 53, 385–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, X.; Smith, B.A.; Zhai, S. Quasi-Qwerty soft keyboard optimization. In Proceedings of the CHI ‘10: SIGCHI Conference on Human Factors in Computing Systems, Online, 10–15 April 2010; ACM: Montréal, QC, Canada, 2010; pp. 283–286. [Google Scholar]
- Bi, X.; Smith, B.A.; Zhai, S. Multilingual touchscreen keyboard design and optimization. Hum. Comput. Interact. 2012, 27, 352–382. [Google Scholar]
- Li, Y.; Chen, L.; Goonetilleke, R.S. A heuristic-based approach to optimize keyboard design for single-finger keying applications. Int. J. Ind. Ergon. 2006, 36, 695–704. [Google Scholar] [CrossRef]
- Dell’Amico, M.; Díaz, J.C.D.; Iori, M.; Montanari, R. The single-finger keyboard layout problem. Comput. Oper. Res. 2009, 36, 3002–3012. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, I.S.; Zhang, S.X. The design and evaluation of a high-performance soft keyboard. In Proceedings of the CHI ‘99: SIGCHI Conference on Human Factors in Computing Systems, Online, 15–20 May 1999; ACM: Pittsburgh, PA, USA, 1999; pp. 25–31. [Google Scholar]
- Findlater, L.; Wobbrock, J.O. Personalized Input: Improving Ten-Finger Touchscreen Typing through Automatic Adaptation. In Proceedings of the CHI ‘12: SIGCHI Conference on Human Factors in Computing Systems, Online, 5–10 May 2012; ACM: Austin, TX, USA, 2012; pp. 815–824. [Google Scholar]
- Fager, S.K.; Fried-Oken, M.; Jakobs, T.; Beukelman, D.R. New and emerging access technologies for adults with complex communication needs and severe motor impairments: State of the science. Augment. Altern. Commun. 2019, 35, 13–25. [Google Scholar] [CrossRef]
- Zhang, S.X. A High Performance Soft Keyboard for Mobile Systems; The University of Guelph: Guelph, ON, Canada, 1998. [Google Scholar]
- Zhai, S.; Sue, A.; Accot, J. Movement Model, Hits Distribution and Learning in Virtual Keyboarding. In Proceedings of the CHI02: Human Factors in Computing Systems, Online, 20–25 April 2002; ACM: Minneapolis, MN, USA, 2002; pp. 17–24. [Google Scholar]
- Rowe, F.J.; Wright, D.; Brand, D.; Jackson, C.; Harrison, S.; Maan, T.; Scott, C.; Vogwell, L.; Peel, S.; Akerman, N.; et al. A Prospective Profile of Visual Field Loss following Stroke: Prevalence, Type, Rehabilitation, and Outcome. Biomed. Res. Int. 2013, 2013, 1. [Google Scholar] [CrossRef]
- Nordmark, E.; Hägglund, G.; Lauge-Pedersen, H.; Wagner, P.; Westbom, L. Development of lower limb range of motion from early childhood to adolescence in cerebral palsy: A population-based study. BMC Med. 2009, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Trudeau, M.B.; Udtamadilok, T.; Karlson, A.K.; Dennerlein, J.T. Thumb Motor Performance Varies by Movement Orientation, Direction, and Device Size During Single-Handed Mobile Phone Use. J. Hum. Factors Ergon Soc. 2011, 5, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Dillen, H.; Phillips, J.G.; Meehan, J.W. Kinematic Analysis of Cursor Trajectories Controlled With a Touchpad. Int. J. Hum. Comput. Interact. 2005, 19, 223–239. [Google Scholar] [CrossRef]
- Boritz, J.; Booth, K.S.; Cowan, W.B. Fitts’s Law Studies of Directional Mouse Movement. Hum. Perform. 1991, 1, 6. [Google Scholar]
- Jagacinski, R.J.; Monk, D.L. Fitts’ law in two dimensions with hand and head movements movements. J. Mot. Behav. 1985, 17, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Vojtech, J.M.; Hablani, S.; Cler, G.J.; Stepp, C.E. Integrated head-tilt and electromyographic cursor control. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- MacKenzie, I.S. Fitts’ Law as a Research and Design Tool in Human-Computer Interaction. Hum. Comput. Interact. 1992, 7, 91–139. [Google Scholar] [CrossRef]
- MacKenzie, I.S. A Note on the Information-Theoretic Basis for Fitts’ Law. J. Mot. Behav. 1989, 21, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Soukoreff, R.W.; Mackenzie, I.S. Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts’ law research in HCI. Int J. Hum. Comput Stud. 2004, 61, 751–789. [Google Scholar] [CrossRef]
- Cohen, J. (Ed.) Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Chung, J.; Pedigo, B.D.; Bridgeford, E.W.; Varjavand, B.K.; Helm, H.S.; Vogelstein, J.T. GraSPy: Graph Statistics in Python. J. Mach. Learn. Res. 2019, 20, 1–7. [Google Scholar]
- Vogelstein, J.T.; Conroy, J.M.; Lyzinski, V.; Podrazik, L.J.; Kratzer, S.G.; Harley, E.T.; Fishkind, D.E.; Vogelstein, R.J.; Priebe, C.E. Fast Approximate Quadratic Programming for Graph Matching. PLoS ONE 2015, 10, e0121002. [Google Scholar] [CrossRef] [Green Version]
- Cler, G.J.; Stepp, C.E. Development and theoretical evaluation of optimized phonemic interfaces. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility, Online, 20 October–1 November 2017; ACM: Baltimore, MD, USA, 2017; pp. 230–239. [Google Scholar]
- Burkard, R.; Dell’Amico, M.; Martello, S. Assignment problems. J. Political Econ. 2017, 125, 203. [Google Scholar]
- MacKenzie, I.S.; Soukoreff, R.W. Phrase sets for evaluating text entry techniques. In Proceedings of the CHI ‘03 Extended Abstracts on Human Factors in Computing Systems, Online, 5–10 April 2003; ACM: Ft. Lauderdale, FL, USA, 2003; pp. 754–755. [Google Scholar]
- Groll, M.D.; Hablani, S.; Vojtech, J.M.; Stepp, C.E. Cursor Click Modality in an Accelerometer-Based Computer Access Device. IEEE Trans. Neural. Syst. Rehabil. Eng. 2020, 28, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Cler, G.J.; Stepp, C.E. Discrete Versus Continuous Mapping of Facial Electromyography for Human–Machine Interface Control: Performance and Training Effects. IEEE Trans. Neural. Syst. Rehabil. Eng. 2015, 23, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.H.; De Luca, G.; Cheng, M.S.; Johansson, A.; Gilmore, L.D.; De Luca, C.J. Electro-mechanical stability of surface EMG sensors. Med. Biol Eng. Comput. 2007, 45, 447–457. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2001, 10, 361–374. [Google Scholar] [CrossRef]
- Talhouet H de Webster, J.G. The origin of skin-stretch-caused motion artifacts under electrodes. Physiol. Meas. 1996, 17, 81. [Google Scholar] [CrossRef]
- Mckinney, W. Data Structures for Statistical Computing in Python. Proc. 9th Python Sci. Conf. 2010, 445, 56–61. [Google Scholar]
- The Pandas Development Team. Pandas-Dev/Pandas: Pandas. Zenodo. 2021. Available online: https://zenodo.org/record/4572994 (accessed on 11 July 2022).
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods. 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- PyInstaller Development Team. PyInstaller. 2019. Available online: https://www.pyinstaller.org/index.html (accessed on 11 July 2022).
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Project T Jamovi. Jamovi. 2021. Available online: https://www.jamovi.org/ (accessed on 11 July 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: https://cran.r-project.org (accessed on 11 July 2022).
- Gallucci, M. GAMLj: General Analyses for Linear Models. 2019. Available online: https://gamlj.github.io/ (accessed on 11 July 2022).
- Ghasemi, A.; Zahediasl, S. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int. J. Endocrinol. Metab. 2012, 10, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roig-Maimó, M.F.; MacKenzie, I.S.; Manresa-Yee, C.; Varona, J. Evaluating Fitts’ Law Performance With a Non-ISO Task. In Proceedings of the XVIII International Conference on Human Computer Interaction, Online, 25–27 September 2017; ACM: Cancun, Mexico, 2017; p. 8. [Google Scholar]
- Farhad, M.; MacKenzie, I.S. Evaluating Tap-and-Drag: A Single-Handed Zooming Method. In Human Computer Interaction Interaction Technologies; Springer: Berlin/Heidelberg, Germany, 2018; pp. 233–246. [Google Scholar]
- Hansen, J.P.; Rajanna, V.; MacKenzie, I.S.; Bækgaard, P. A Fitts’ Law Study of Click and Dwell Interaction by Gaze, Head and Mouse with a Head-Mounted Display. In Proceedings of the Workshop on Communication by Gaze Interaction, Online, 15 June 2018; ACM: Warsaw, Poland, 2018; pp. 1–5. [Google Scholar]
- Cassidy, B.; Read, J.C.; MacKenzie, I.S. FittsFarm: Comparing Children’s Drag-and-Drop Performance Using Finger and Stylus Input on Tablets. In Human-Computer Interaction-INTERACT; Springer: Berlin/Heidelberg, Germany, 2019; pp. 656–668. [Google Scholar]
- Hassan, M.; Magee, J.; MacKenzie, I.S. A Fitts’ Law Evaluation of Hands-Free and Hands-On Input on a Laptop Computer. In Universal Access in Human-Computer Interaction. Multimodality and Assistive Environments; Springer: Berlin/Heidelberg, Germany, 2019; pp. 234–249. [Google Scholar]
- Bækgaard, P.; Hansen, J.P.; Minakata, K.; MacKenzie, I.S. A Fitts’ Law Study of Pupil Dilations in a Head-Mounted Display. In Proceedings of the 2019 Symposium on Eye Tracking Research and Applications, Online, 25–28 June 2019; ACM: Denver, CO, USA, 2019. [Google Scholar]
- MacKenzie, I.S.; Buxton, W. Extending Fitts’ law to two-dimensional tasks. In Proceedings of the CHI92: Conference on Human Factors in Computing, Online, 3–7 May 1992; ACM: Monterey, CA, USA, 1992; pp. 219–226. [Google Scholar]
- Burno, R.A. Equating User Experience and Fitts’ Law in Gesture Based Input Modalities; Arizona State University: Arizona, AZ, USA, 2015. [Google Scholar]
- Vojtech, J.M.; Cler, G.J.; Stepp, C.E. Prediction of Optimal Facial Electromyographic Sensor Configurations for Human-Machine Interface Control. IEEE Trans. Neural. Syst. Rehabil. Eng. 2018, 26, 1566–1576. [Google Scholar] [CrossRef]
- Sanchez, C.; Costa, V.; Garcia-Carmona, R.; Urendes, E.; Tejedor, J.; Raya, R. Evaluation of Child–Computer Interaction Using Fitts’ Law: A Comparison between a Standard Computer Mouse and a Head Mouse. Sensors 2021, 21, 3826. [Google Scholar] [CrossRef]
- Larson, E.; Terry, H.P.; Canevari, M.M.; Stepp, C.E. Categorical Vowel Perception Enhances the Effectiveness and Generalization of Auditory Feedback in Human-Machine-Interfaces. PLoS ONE 2013, 8, 59860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.R.; Kirsch, R.F. Evaluation of Head Orientation and Neck Muscle EMG Signals as Command Inputs to a Human-Computer Interface for Individuals with High Tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 496. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.; Rim, B.C.; Kim, J. Development and evaluation of a assistive computer interface by SEMG for individuals with spinal cord injuries. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–5. [Google Scholar]
- Zhai, S.; Kong, J.; Ren, X. Speed–accuracy tradeoff in Fitts’ law tasks—On the equivalency of actual and nominal pointing precision. Int. J. Hum. Comput. Stud. 2004, 61, 823–856. [Google Scholar] [CrossRef]
Model | Effect | df | ηp2 | F | p |
---|---|---|---|---|---|
Target Selection Accuracy | Efficiency | (1, 129) | – | 2.75 | 0.100 |
Keyboard | (1, 74) | – | 1.79 | 0.185 | |
Block | (1, 2519) | 0.01 | 15.07 | <0.001 | |
Exposure | (1, 2518) | 0.00 | 7.55 | 0.006 | |
Keyboard × Block | (1, 2519) | – | 1.72 | 0.190 | |
Keyboard × Exposure | (1, 2518) | – | 0.27 | 0.605 | |
WPM | Efficiency | (1, 2473) | 0.02 | 43.33 | <0.001 |
Keyboard | (1, 24) | 0.23 | 6.93 | 0.015 | |
Block | (1, 2519) | 0.29 | 1045.90 | <0.001 | |
Exposure | (1, 2518) | 0.09 | 249.95 | <0.001 | |
Keyboard × Block | (1, 2519) | – | 0.00 | 0.971 | |
Keyboard × Exposure | (1, 2518) | – | 1.30 | 0.254 | |
ITR | Efficiency | (1, 2403) | 0.01 | 33.24 | <0.001 |
Keyboard | (1, 27) | 0.21 | 6.87 | 0.014 | |
Block | (1, 2519) | 0.25 | 845.75 | <0.001 | |
Exposure | (1, 2518) | 0.07 | 188.21 | <0.001 | |
Keyboard × Block | (1, 2519) | – | 0.16 | 0.692 | |
Keyboard × Exposure | (1, 2518) | – | 0.46 | 0.482 |
Model | Effect | df | ηp2 | F | p |
---|---|---|---|---|---|
Target Selection Accuracy | Keyboard | (1, 15) | 0.42 | 10.8 | 0.005 |
WPM | Keyboard | (1, 15) | 0.51 | 71.6 | <0.001 |
WPM* | Keyboard | (1, 15) | 0.20 | 74.5 | <0.001 |
ITR | Keyboard | (1, 15) | 0.87 | 97.2 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, C.L.; Cler, G.J.; Fager, S.K.; Contessa, P.; Roy, S.H.; De Luca, G.; Kline, J.C.; Vojtech, J.M. Ability-Based Methods for Personalized Keyboard Generation. Multimodal Technol. Interact. 2022, 6, 67. https://doi.org/10.3390/mti6080067
Mitchell CL, Cler GJ, Fager SK, Contessa P, Roy SH, De Luca G, Kline JC, Vojtech JM. Ability-Based Methods for Personalized Keyboard Generation. Multimodal Technologies and Interaction. 2022; 6(8):67. https://doi.org/10.3390/mti6080067
Chicago/Turabian StyleMitchell, Claire L., Gabriel J. Cler, Susan K. Fager, Paola Contessa, Serge H. Roy, Gianluca De Luca, Joshua C. Kline, and Jennifer M. Vojtech. 2022. "Ability-Based Methods for Personalized Keyboard Generation" Multimodal Technologies and Interaction 6, no. 8: 67. https://doi.org/10.3390/mti6080067
APA StyleMitchell, C. L., Cler, G. J., Fager, S. K., Contessa, P., Roy, S. H., De Luca, G., Kline, J. C., & Vojtech, J. M. (2022). Ability-Based Methods for Personalized Keyboard Generation. Multimodal Technologies and Interaction, 6(8), 67. https://doi.org/10.3390/mti6080067