In Search of Embodied Conversational and Explainable Agents for Health Behaviour Change and Adherence
Abstract
:1. Introduction
2. Background
2.1. Working Alliance
2.2. An Introduction to Conversational Agents
2.3. Explainable AI & Explainable Agents
3. Conversational and Explainable Agents for Health Behaviour Change
3.1. Embodied Conversational Agents for Health Behaviour Change
3.2. Explainable Agents in Healthcare
3.3. A Comparison of Health ECAs and XAs through WA Lens
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- WHO. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Lehane, E.; McCarthy, G. Intentional and Unintentional Medication Non-Adherence: A Comprehensive Framework for Clinical Research and Practice? A Discussion Paper. Int. J. Nurs. Stud. 2007, 44, 1468–1477. [Google Scholar] [CrossRef]
- Rueda, S.; Park-Wyllie, L.Y.; Bayoumi, A.; Tynan, A.M.; Antoniou, T.; Rourke, S.; Glazier, R. Patient support and education for promoting adherence to highly active antiretroviral therapy for HIV/AIDS. Cochrane Database Syst. Rev. 2006, CD001442. [Google Scholar] [CrossRef] [PubMed]
- Pop-Eleches, C.; Thirumurthy, H.; Habyarimana, J.P.; Zivin, J.G.; Goldstein, M.P.; De Walque, D.; Mackeen, L.; Haberer, J.; Kimaiyo, S.; Sidle, J.; et al. Mobile Phone Technologies Improve Adherence to Antiretroviral Treatment in a Resource-Limited Setting: A Randomized Controlled Trial of Text Message Reminders. AIDS 2011, 25, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Nutbeam, D. The Evolving Concept of Health Literacy. Soc. Sci. Med. 2008, 67, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
- Atkins, L.; Fallowfield, L. Intentional and Non-intentional Non-adherence to Medication Amongst Breast Cancer Patients. Eur. J. Cancer 2006, 42, 2271–2276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieverink, F.; Kelders, S.M.; van Gemert-Pijnen, J.E. Clarifying the Concept of Adherence to eHealth Technology: Systematic Review on When Usage Becomes Adherence. J. Med. Internet Res. 2017, 19, e402. [Google Scholar] [CrossRef]
- Navarra, A.-M.D.; Gwadz, M.V.; Whittemore, R.; Bakken, S.R.; Cleland, C.M.; Burleson, W.; Jacobs, S.K.; Melkus, G.D.E. Health Technology-Enabled Interventions for Adherence Support and Retention in Care Among US HIV-Infected Adolescents and Young Adults: An Integrative Review. AIDS Behav. 2017, 21, 3154–3171. [Google Scholar] [CrossRef]
- Christensen, H.; Griffiths, K.M.; Farrer, L. Adherence in internet interventions for anxiety and depression: Systematic review. J. Med. Internet Res. 2009, 11, e13. [Google Scholar] [CrossRef]
- Badawy, S.M.; Thompson, A.A.; Kuhns, L.M. Medication Adherence and Technology-Based Interventions for Adolescents With Chronic Health Conditions: A Few Key Considerations. JMIR mHealth uHealth 2017, 5, e202. [Google Scholar] [CrossRef] [Green Version]
- Heynsbergh, N.; Heckel, L.; Botti, M.; Livingston, P.M. Feasibility, Useability and Acceptability of Technology-Based Interventions for Informal Cancer Carers: A Systematic Review. BMC Cancer 2018, 18, 244. [Google Scholar] [CrossRef] [PubMed]
- Kelders, S.M.; Kok, R.N.; Ossebaard, H.C.; Van Gemert-Pijnen, J.E. Persuasive system design does matter: A systematic review of adherence to web-based interventions. J. Med. Internet Res. 2012, 14, e152. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.K.; Fuertes, J.N.; Keitel, M.; Phillips, R. The Role of Patient Attachment and Working Alliance on Patient Adherence, Satisfaction, and Health-Related Quality of Life in Lupus Treatment. Patient Educ. Couns. 2011, 85, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Bordin, E.S. The Generalizability of the Psychoanalytic Concept of the Working Alliance. Psychother. Theory Res. Pract. 1979, 16, 252. [Google Scholar] [CrossRef] [Green Version]
- Harman, K.; MacRae, M.; Vallis, M.; Bassett, R.J.P.C. Working with people to make changes: A behavioural change approach used in chronic low back pain rehabilitation. Physiother. Can. 2014, 66, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, B.; Farzanfar, R.; Friedman, R.H. Personal Relationships with an Intelligent Interactive Telephone Health Behavior Advisor System: A Multimethod Study Using Surveys and Ethnographic Interviews. Int. J. Med. Inform. 2003, 71, 33–41. [Google Scholar] [CrossRef]
- O’Keefe, D.J. Trends and Prospects in Persuasion Theory and Research. In Readings in Persuasion, Social Influence, and Compliance Gaining; Pearson/Allyn and Bacon: Boston, MA, USA, 2004; pp. 31–43. [Google Scholar]
- Provoost, S.; Lau, H.M.; Ruwaard, J.; Riper, H. Embodied Conversational Agents in Clinical Psychology: A Scoping Review. J. Med. Internet Res. 2017, 19, e151. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.; Chaboyer, W.; Gonzalez, R.; Marshall, A. Using technology to engage hospitalised patients in their care: A realist review. BMC Health Serv. Res. 2017, 17, 388. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Morency, L.-P.; Gratch, J. Virtual Rapport 2.0. In International Workshop on Intelligent Virtual Agents; Springer: Berlin/Heidelberg, Germany, 2011; pp. 68–79. [Google Scholar]
- Hojat, M. Empathy in Patient Care: Antecedents, Development, Measurement, and Outcomes; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Walton, D. Dialogical Models of Explanation. ExaCt 2007, 2007, 1–9. [Google Scholar]
- Mathieu, J.E.; Heffner, T.S.; Goodwin, G.F.; Salas, E.; Cannon-Bowers, J.A. The Influence of Shared Mental Models on Team Process and Performance. J. Appl. Psychol. 2000, 85, 273–283. [Google Scholar] [CrossRef]
- Graßmann, C.; Schölmerich, F.; Schermuly, C.C. The Relationship between Working Alliance and Client Outcomes in Coaching: A Meta-Analysis. Hum. Relat. 2020, 73, 35–58. [Google Scholar] [CrossRef]
- Horvath, A.O.; Symonds, B.D. Relation between Working Alliance and Outcome in Psychotherapy: A Meta-Analysis. J. Couns. Psychol. 1991, 38, 139. [Google Scholar] [CrossRef]
- Krupnick, J.L.; Sotsky, S.M.; Elkin, I.; Simmens, S.; Moyer, J.; Watkins, J.; Pilkonis, P.A. The role of the therapeutic alliance in psychotherapy and pharmacotherapy outcome: Findings in the National Institute of Mental Health Treatment of Depression Collaborative Research Program. Focus 2006, 4, 532–539. [Google Scholar] [CrossRef]
- Catty, J. ‘The Vehicle of Success’: Theoretical and Empirical Perspectives on the Therapeutic Alliance in Psychotherapy. Psychol. Psychother. Theory Res. Pract. 2004, 77, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Bordin, E. Of human bonds that bind or free. In Proceedings of the Annual Meeting of the Society for Psychotherapy Research, Pacific Grove, CA, USA, 17–20 June 1980. [Google Scholar]
- Horvath, A.O.; Greenberg, L.S. Development and Validation of the Working Alliance Inventory. J. Couns. Psychol. 1989, 36, 223. [Google Scholar] [CrossRef]
- Sherwood, G.; Thomas, E.; Bennett, D.S.; Lewis, P. A teamwork model to promote patient safety in critical care. Crit. Care Nurs. Clin. N. Am. 2002, 14, 333–340. [Google Scholar] [CrossRef]
- Bratman, M. Intention, Plans, and Practical Reason; Harvard University Press: Cambridge, MA, USA, 1987; Volume 10. [Google Scholar]
- Grosz, B.J.; Kraus, S. The Evolution of SharedPlans. In Applied Logic Series; Springer: Berlin/Heidelberg, Germany, 1999; pp. 227–262. [Google Scholar]
- Dorri, A.; Kanhere, S.S.; Jurdak, R. Multi-agent systems: A survey. IEEE Access 2018, 6, 28573–28593. [Google Scholar] [CrossRef]
- Rizk, Y.; Awad, M.; Tunstel, E.W. Cooperative heterogeneous multi-robot systems: A survey. ACM Comput.Surv. (CSUR) 2019, 52, 1–31. [Google Scholar] [CrossRef]
- Grosz, B.J.; Sidner, C.L. Plans for Discourse; BBN LABS Inc.: Cambridge, MA, USA, 1988. [Google Scholar]
- Rich, C.; Sidner, C.L.; Lesh, N. Collagen: Applying collaborative discourse theory to human-computer interaction. AI Mag. 2001, 22, 15. [Google Scholar]
- Bickmore, T.; Schulman, D.; Shaw, G. Dtask and Litebody: Open Source, Standards-Based Tools for Building Web-Deployed Embodied Conversational Agents. In International Workshop on Intelligent Virtual Agents; Springer: Berlin/Heidelberg, Germany, 2009; pp. 425–431. [Google Scholar]
- Smith, A.; Page, D.U.S. Smartphone Use in 2015. 2015. Available online: http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015 (accessed on 1 April 2015).
- Miner, A.S.; Milstein, A.; Schueller, S.; Hegde, R.; Mangurian, C.; Linos, E. Smartphone-based conversational agents and responses to questions about mental health, interpersonal violence, and physical health. JAMA Intern. Med. 2016, 176, 619–625. [Google Scholar] [CrossRef]
- Laranjo, L.; Dunn, A.G.; Tong, H.L.; Kocaballi, A.B.; Chen, J.; Bashir, R.; Surian, D.; Gallego, B.; Magrabi, F.; Lau, A.Y.S.; et al. Conversational agents in healthcare: A systematic review. J. Am. Med. Inform. Assoc. 2018, 25, 1248–1258. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, T.; Magrabi, F.; Coiera, E. Efficiency and safety of speech recognition for documentation in the electronic health record. J. Am. Med. Inform. Assoc. 2017, 24, 1127–1133. [Google Scholar] [CrossRef]
- Kennedy, C.M.; Powell, J.; Payne, T.H.; Ainsworth, J.; Boyd, A.; Buchan, I. Active assistance technology for health-related behavior change: An interdisciplinary review. J. Med. Internet Res. 2012, 14, e80. [Google Scholar] [CrossRef]
- Isbister, K.; Doyle, P. The blind men and the elephant revisited. In From Brows to Trust; Springer: Berlin/Heidelberg, Germany, 2004; pp. 3–26. [Google Scholar]
- Bittner, E.; Oeste-Reiß, S.; Leimeister, J.M. Where Is the Bot in Our Team? Toward a Taxonomy of Design Option Combinations for Conversational Agents in Collaborative Work. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Hawaii, HI, USA, 8 January 2019. [Google Scholar]
- Diederich, S.; Brendel, A.B.; Kolbe, L.M. Towards a Taxonomy of Platforms for Conversational Agent Design. In Proceedings of the 14th International Conference on Wirtschaftsinformatik, Siegen, Germany, 24–27 February 2019. [Google Scholar]
- Zierau, N.; Wambsganss, T.; Janson, A.; Schöbel, S.; Leimeister, J.M. The anatomy of user experience with conversational agents: A taxonomy and propositions of service clues. In Proceedings of the International Conference on Information Systems (ICIS), Hyderabad, India, 13–16 December 2020. [Google Scholar]
- Ter Stal, S.; Kramer, L.L.; Tabak, M.; op den Akker, H.; Hermens, H. Design Features of Embodied Conversational Agents in eHealth: A Literature Review. Int. J. Hum.-Comput. Stud. 2020, 138, 102409. [Google Scholar] [CrossRef]
- Weizenbaum, J. ELIZA—A computer program for the study of natural language communication between man and machine. Commun. ACM 1966, 9, 36–45. [Google Scholar] [CrossRef]
- Colby, K.M. Artificial Paranoia: A Computer Simulation of Paranoid Processes. Behav. Ther. 1975, 7. [Google Scholar] [CrossRef]
- Crutzen, R.; Peters, G.-J.Y.; Portugal, S.D.; Fisser, E.M.; Grolleman, J.J. An Artificially Intelligent Chat Agent That Answers Adolescents’ Questions Related to Sex, Drugs, and Alcohol: An Exploratory Study. J. Adolesc. Health 2011, 48, 514–519. [Google Scholar] [CrossRef]
- Ireland, D.; Atay, C.; Liddle, J.J.; Bradford, D.; Lee, H.; Rushin, O.; Mullins, T.; Angus, D.; Wiles, J.; McBride, S. Hello harlie: Enabling speech monitoring through chat-bot conversations. Stud. Health Technol. Inform. 2016, 227, 55–60. [Google Scholar] [PubMed]
- Colby, K.M. A Computer Program Using Cognitive Therapy to Treat Depressed Patients. Psychiatr. Serv. 1995, 46, 1223–1225. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, K.K.; Darcy, A.; Vierhile, M. Delivering Cognitive Behavior Therapy to Young Adults with Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment. Health 2017, 4, e19. [Google Scholar] [CrossRef]
- Grudin, J.; Jacques, R. Chatbots, humbots, and the quest for artificial general intelligence. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–11. [Google Scholar]
- Cassell, J. Embodied conversational agents: Representation and intelligence in user interfaces. AI Mag. 2001, 22, 67. [Google Scholar]
- Van Pinxteren, M.M.; Pluymaekers, M.; Lemmink, J.G. Human-like communication in conversational agents: A literature review and research agenda. J. Serv. Manag. 2020, 31, 203–225. [Google Scholar] [CrossRef]
- Isbister, K.; Nass, C. Consistency of Personality in Interactive Characters: Verbal Cues, Non-Verbal Cues, and User Characteristics. Int. J. Hum.-Comput. Stud. 2000, 53, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Clore, G.L.; Ortony, A. Psychological Construction in the OCC Model of Emotion. Emotion Rev. 2013, 5, 335–343. [Google Scholar] [CrossRef]
- Picard, R.W. Affective Computing; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Bickmore, T. Towards the Design of Multimodal Interfaces for Handheld Conversational Characters. In CHI’02 Extended Abstracts on Human Factors in Computing Systems; ACM: New York, NY, USA, 2002. [Google Scholar]
- Utami, D.; Bickmore, T.; Nikolopoulou, A.; Paasche-Orlow, M. Talk about death: End of life planning with a virtual agent. In International Conference on Intelligent Virtual Agents; Springer: Berlin/Heidelberg, Germany, 2017; pp. 441–450. [Google Scholar]
- Yee, N.; Bailenson, J.N.; Rickertsen, K. A meta-analysis of the impact of the inclusion and realism of human-like faces on user experiences in interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 28 April–3 May 2007; pp. 1–10. [Google Scholar]
- Rheu, M.; Shin, J.Y.; Peng, W.; Huh-Yoo, J. Systematic Review: Trust-Building Factors and Implications for Conversational Agent Design. Int. J. Hum.–Comput. Interact. 2020, 37, 81–96. [Google Scholar] [CrossRef]
- Bian, Y.; Yang, C.; Guan, D.; Xiao, S.; Gao, F.; Shen, C.; Meng, X. Effects of pedagogical agent’s personality and emotional feedback strategy on Chinese students’ learning experiences and performance: A study based on virtual Tai Chi training studio. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 433–444. [Google Scholar]
- McRorie, M.; Sneddon, I.; McKeown, G.; Bevacqua, E.; de Sevin, E.; Pelachaud, C. Evaluation of Four Designed Virtual Agent Personalities. IEEE Trans. Affect. Comput. 2011, 3, 311–322. [Google Scholar] [CrossRef] [Green Version]
- De Rosis, F.; Pelachaud, C.; Poggi, I.; Carofiglio, V.; De Carolis, B. From Greta’s Mind to Her Face: Modelling the Dynamics of Affective States in a Conversational Embodied Agent. Int. J. Hum.-Comput. Stud. 2003, 59, 81–118. [Google Scholar] [CrossRef] [Green Version]
- Paiva, A.; Leite, I.; Boukricha, H.; Wachsmuth, I. Empathy in virtual agents and robots: A survey. ACM Trans. Interact. Intell. Syst. (TiiS) 2017, 7, 1–40. [Google Scholar] [CrossRef]
- “Explanation”. Oxford English Dictionary. Available online: https://www.oed.com/view/Entry/66604?rskey=wFVxij&result=1&isAdvanced=true (accessed on 28 June 2021).
- Glass, A.; McGuinness, D.L.; Wolverton, M. Toward establishing trust in adaptive agents. In Proceedings of the 13th International Conference on Intelligent User Interfaces, Gran Canaria, Spain, 13–16 January 2008; pp. 227–236. [Google Scholar]
- Hilton, D.J. Conversational Processes and Causal Explanation. Psychol. Bull. 1990, 107, 65–81. [Google Scholar] [CrossRef]
- Van den Bosch, K.; Harbers, M.; Heuvelink, A.; van Doesburg, W. Intelligent agents for training on-board fire fighting. In International Conference on Digital Human Modeling; Springer: Berlin/Heidelberg, Germany, 2009; pp. 463–472. [Google Scholar] [CrossRef]
- Scott, A.C.; Clancey, W.J.; Davis, R.; Shortliffe, E.H. Explanation Capabilities of Production-Based Consultation Systems; Stanford University CA Department of Computer Science: Stanford, CA, USA, 1977. [Google Scholar]
- Swartout, W.R. Explaining and justifying expert consulting programs. In Computers and Medicine; Springer: Berlin/Heidelberg, Germany, 1985; pp. 254–271. [Google Scholar]
- Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Müller, K.-R. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer Nature: Berlin/Heidelberg, Germany, 2019; Volume 11700. [Google Scholar]
- Hamidi, F.; Scheuerman, M.K.; Branham, S.M. Gender Recognition or Gender Reductionism? The Social Implications of Embedded Gender Recognition Systems. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–13. [Google Scholar]
- Miller, T. Explanation in Artificial Intelligence: Insights from the Social Sciences. Artif. Intell. 2019, 267, 1–38. [Google Scholar] [CrossRef]
- Parasuraman, R.; Riley, V. Humans and Automation: Use, Misuse, Disuse, Abuse. Hum. Factors J. Hum. Factors Ergon. Soc. 1997, 39, 230–253. [Google Scholar] [CrossRef]
- Dzindolet, M.T.; Peterson, S.A.; Pomranky, R.A.; Pierce, L.G.; Beck, H.P. The Role of Trust in Automation Reliance. Int. J. Hum.-Comput. Stud. 2003, 58, 697–718. [Google Scholar] [CrossRef]
- Anjomshoae, S.; Najjar, A.; Calvaresi, D.; Främling, K. Explainable Agents and Robots: Results from a Systematic Literature Review. In Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019), International Foundation for Autonomous Agents and Multiagent Systems, Montreal, QC, Canada, 13–17 May 2019; pp. 1078–1088. [Google Scholar]
- Samek, W.; Wiegand, T.; Müller, K.-R. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv 2017, arXiv:1708.08296. [Google Scholar]
- Moulin, B.; Irandoust, H.; Bélanger, M.; Desbordes, G. Explanation and Argumentation Capabilities:Towards the Creation of More Persuasive Agents. Artif. Intell. Rev. 2002, 17, 169–222. [Google Scholar] [CrossRef]
- Isern, D.; Moreno, A. A Systematic Literature Review of Agents Applied in Healthcare. J. Med. Syst. 2016, 40, 43. [Google Scholar] [CrossRef]
- Belpaeme, T.; Kennedy, J.; Ramachandran, A.; Scassellati, B.; Tanaka, F. Social Robots for Education: A Review. Sci. Robot. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Dixit, A.; Javalgi, R.R.G.; Dass, M. Research Framework, Strategies, and Applications of Intelligent Agent Technologies (IATs) In Marketing. J. Acad. Mark. Sci. 2016, 44, 24–45. [Google Scholar] [CrossRef]
- Langley, P.; Meadows, B.; Sridharan, M.; Choi, D. Explainable agency for intelligent autonomous systems. In Proceedings of the Twenty-Ninth IAAI Conference, San Francisco, CA, USA, 6–9 February 2017; pp. 4762–4763. [Google Scholar]
- Dennett, D.C. Three Kinds of Intentional Psychology. In Reduction, Time and Reality; Cambridge University Press: Cambridge, UK, 1981; pp. 37–61. [Google Scholar]
- Dennett, D.C. The Intentional Stance; MIT Press: Cambridge, MA, USA, 1989. [Google Scholar]
- Nass, C.; Moon, Y.; Carney, P. Are People Polite to Computers? Responses to Computer-Based Interviewing Systems1. J. Appl. Soc. Psychol. 1999, 29, 1093–1109. [Google Scholar] [CrossRef]
- De Graaf, M.M.; Malle, B.F. How people explain action (and autonomous intelligent systems should too). In Proceedings of the 2017 AAAI Fall Symposium Series, Arlington, VA, USA, 9–11 November 2017. [Google Scholar]
- Malle, B.F. How People Explain Behavior: A New Theoretical Framework. Pers. Soc. Psychol. Rev. 1999, 3, 23–48. [Google Scholar] [CrossRef]
- Malle, B. Folk Theory of Mind: Conceptual Foundations of Social Cognition. APA 2012. [Google Scholar] [CrossRef] [Green Version]
- Harbers, M.; Van den Bosch, K.; Meyer, J.-J. Modeling Agents with a Theory of Mind: Theory–theory Versus Simulation Theory. Web Intell. Agent Syst. Int. J. 2012, 10, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Hilton, D.J.; McClure, J.; Sutton, R.M. Selecting Explanations from Causal Chains: Do Statistical Principles Explain Preferences for Voluntary Causes? Eur. J. Soc. Psychol. 2009, 40, 383–400. [Google Scholar] [CrossRef]
- Harbers, M.; van den Bosch, K.; Meyer, J.-J. Design and Evaluation of Explainable BDI Agents. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Toronto, ON, Canada, 31 August–3 September 2010; Volume 2, pp. 125–132. [Google Scholar]
- Kaptein, F.; Broekens, J.; Hindriks, K.; Neerincx, M. Personalised Self-Explanation by Robots: The Role of Goals Versus Beliefs in Robot-Action Explanation for Children and Adults. In Proceedings of the 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 676–682. [Google Scholar]
- Wheeler, S.C.; Petty, R.E.; Bizer, G.Y. Self-schema matching and attitude change: Situational and dispositional determinants of message elaboration. J. Consum. Res. 2005, 31, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Hagger, M.S.; Chatzisarantis, N.L.D.; Harris, J. From Psychological Need Satisfaction to Intentional Behavior: Testing a Motivational Sequence in Two Behavioral Contexts. Pers. Soc. Psychol. Bull. 2006, 32, 131–148. [Google Scholar] [CrossRef] [Green Version]
- Bickmore, T.; Gruber, A. Relational Agents in Clinical Psychiatry. Harv. Rev. Psychiatr. 2010, 18, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Lisetti, C.L.; Wagner, E. Mental Health Promotion with Animated Characters: Exploring Issues and Potential. In Proceedings of the AAAI Spring Symposium: Emotion, Personality, and Social Behavior, Stanford, CA, USA, 26–28 March 2008; pp. 72–79. [Google Scholar]
- Richards, D.; Caldwell, P. Building a Working Alliance with a Knowledge Based System Through an Embodied Conversational Agent. In Knowledge Management and Acquisition for Intelligent Systems; Springer International Publishing: Cham, Switzerland, 2016; pp. 213–227. [Google Scholar]
- Bickmore, T.W.; Schulman, D.; Sidner, C.L. A Reusable Framework for Health Counseling Dialogue Systems Based on a Behavioral Medicine Ontology. J. Biomed. Inform. 2011, 44, 183–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisetti, C.; Amini, R.; Yasavur, U.; Rishe, N. I Can Help You Change! An Empathic Virtual Agent Delivers Behavior Change Health Interventions. ACM Trans. Manag. Inf. Syst. (TMIS) 2013, 4, 1–28. [Google Scholar] [CrossRef]
- Olafsson, S.; Wallace, B.; Bickmore, T.W. Towards a Computational Framework for Automating Substance Use Counseling with Virtual Agents. In Proceedings of the AAMAS, Auckland, New Zealand, 9–13 May 2020; pp. 966–974. [Google Scholar]
- DeVault, D.; Artstein, R.; Benn, G.; Dey, T.; Fast, E.; Gainer, A.; Georgila, K.; Gratch, J.; Hartholt, A.; Lhommet, M. SimSensei Kiosk: A virtual human interviewer for healthcare decision support. In Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, Paris, France, 5–9 May 2014; pp. 1061–1068. [Google Scholar]
- Lucas, G.M.; Gratch, J.; King, A.; Morency, L.-P. It’s only a computer: Virtual humans increase willingness to disclose. Comput. Hum. Behav. 2014, 37, 94–100. [Google Scholar] [CrossRef]
- Zhou, S.; Bickmore, T.; Paasche-Orlow, M.; Jack, B. Agent-user concordance and satisfaction with a virtual hospital discharge nurse. In Proceedings of the International Conference on Intelligent Virtual Agents, Boston, MA, USA, 27–29 August 2014; pp. 528–541. [Google Scholar]
- Kang, S.-H.; Gratch, J. People like virtual counselors that highly-disclose about themselves. Ann. Rev. Cyberther. Telemed. 2011, 167, 143–148. [Google Scholar]
- Richards, D.; Caldwell, P. Improving health outcomes sooner rather than later via an interactive website and virtual specialist. IEEE J. Biomed. Health Inf. 2017, 22, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Bickmore, T.; Picard, R. Establishing and maintaining long-term human-computer relationships. ACM Trans. Comput.-Hum. Interact. (TOCHI) 2005, 12, 293–327. [Google Scholar] [CrossRef]
- Bickmore, T.; Pfeifer, L. Relational agents for antipsychotic medication adherence. In Proceedings of the CHI’08 Workshop on Technology in Mental Health, Florence, Italy, 6 April 2008. [Google Scholar]
- Bickmore, T.W.; Pfeifer, L.M.; Jack, B.W. Taking the time to care: Empowering low health literacy hospital patients with virtual nurse agents. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 4–9 April 2009; pp. 1265–1274. [Google Scholar]
- Schulman, D.; Bickmore, T. Persuading users through counseling dialogue with a conversational agent. In Proceedings of the 4th International Conference on Persuasive Technology, Claremont, CA, USA, 26–29 April 2009; pp. 1–8. [Google Scholar]
- Bickmore, T.; Gruber, A.; Picard, R. Establishing the Computer–patient Working Alliance in Automated Health Behavior Change Interventions. Patient Educ. Couns. 2005, 59, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J.O.; Velicer, W.F. The Transtheoretical Model of Health Behavior Change. Am. J. Health Promot. 1997, 12, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Bickmore, T.W.; Schulman, D.; Sidner, C. Automated interventions for multiple health behaviors using conversational agents. Patient Educ. Couns. 2013, 92, 142–148. [Google Scholar] [CrossRef] [Green Version]
- De Rosis, F.; Nicole, N.; Valeria, C.; Addolorata, C.; Berardina, D.C. User Modeling and Adaptation in Health Promotion Dialogs with an Animated Character. J. Biomed. Inf. 2006, 39, 514–531. [Google Scholar] [CrossRef] [Green Version]
- Lisetti, C.L. 10 advantages of using avatars in patient-centered computer-based interventions for behavior change. SIGHIT Record 2012, 2, 28. [Google Scholar] [CrossRef]
- Lisetti, C.L.; Yasavur, U.; de Leon, C.; Amini, R.; Visser, U.; Rishe, N. Building an On-Demand Avatar-Based Health Intervention for Behavior Change. In Proceedings of the Twenty-Fifth International FLAIRS Conference, Marco Island, FL, USA, 23–25 May 2012. [Google Scholar]
- Amini, R.; Lisetti, C.; Yasavur, U.; Rishe, N. On-Demand Virtual Health Counselor for Delivering Behavior-Change Health Interventions. In Proceedings of the 2013 IEEE International Conference on Healthcare Informatics, Philadelphia, PA, USA, 9–11 September 2013; pp. 46–55. [Google Scholar] [CrossRef]
- Murali, P.; Shamekhi, A.; Parmar, D.; Bickmore, T. Argumentation is More Important than Appearance for Designing Culturally Tailored Virtual Agents. In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, Auckland, New Zealand, 9–13 May 2020; pp. 1940–1942. [Google Scholar]
- Roitman, H.; Messika, Y.; Tsimerman, Y.; Maman, Y. Increasing patient safety using explanation-driven personalized content recommendation. In Proceedings of the 1st ACM International Health Informatics Symposium, Arlington, VA, USA, 11–12 November 2010; pp. 430–434. [Google Scholar]
- Aikins, J.S.; Kunz, J.C.; Shortliffe, E.H.; Fallat, R.J. Puff: An Expert System for Interpretation of Pulmonary Function Data. Comput. Biomed. Res. 1983, 16, 199–208. [Google Scholar] [CrossRef]
- Clancey, W. The Epistemology of a Rule-Based Expert System—A Framework for Explanation. Artif. Intell. 1983, 20, 215–251. [Google Scholar] [CrossRef]
- Darlington, K. Designing for Explanation in Health Care Applications of Expert Systems. Sage Open 2011, 1, 2158244011408618. [Google Scholar] [CrossRef]
- Wendt, T.; Knaup-Gregori, P.; Winter, A. Decision support in medicine: A survey of problems of user acceptance. Med. Infobahn Eur. 2000, 77, 852–856. [Google Scholar]
- Gage, B.F.; Waterman, A.D.; Shannon, W.; Boechler, M.; Rich, M.W.; Radford, M.J. Validation of Clinical Classification Schemes for Predicting Stroke: Results from the National Registry of Atrial Fibrillation. JAMA 2001, 285, 2864–2870. [Google Scholar] [CrossRef]
- Lip, G.Y.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J. Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Letham, B.; Rudin, C.; McCormick, T.H.; Madigan, D. Interpretable Classifiers Using Rules and Bayesian Analysis: Building a Better Stroke Prediction Model. Ann. Appl. Stat. 2015, 9, 1350–1371. [Google Scholar] [CrossRef]
- Keil, F.C. Explanation and understanding. Annu. Rev. Psychol. 2006, 57, 227–254. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, A.; Richards, D.; Bilgin, A.A. Reason Explanation for Encouraging Behaviour Change Intention. In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, London, UK, 3–7 May 2021; pp. 68–77. [Google Scholar]
- Abdulrahman, A.; Richards, D.; Ranjbartabar, H.; Mascarenhas, S. Verbal empathy and explanation to encourage behaviour change intention. J. Multimodal User Interfaces 2021, 15, 189–199. [Google Scholar] [CrossRef]
- Hillier, L. Exploring the Nature of the Therapeutic Alliance in Technology-Based Interventions for Mental Health Problems; Lancaster University: Lancaster, UK, 2018. [Google Scholar]
- Tremain, H.; McEnery, C.; Fletcher, K.; Murray, G. The therapeutic alliance in digital mental health interventions for serious mental illnesses: Narrative review. JMIR Ment. Health 2020, 7, e17204. [Google Scholar] [CrossRef] [PubMed]
- Holter, M.T.; Johansen, A.; Brendryen, H. How a fully automated eHealth program simulates three therapeutic processes: A case study. J. Med. Internet Res. 2016, 18, e176. [Google Scholar] [CrossRef] [Green Version]
- Bachelor, A. Clients’ and therapists’ views of the therapeutic alliance: Similarities, differences and relationship to therapy outcome. Clin. Psychol. Psychother. 2013, 20, 118–135. [Google Scholar] [CrossRef]
- Mackie, C.; Dunn, N.; MacLean, S.; Testa, V.; Heisel, M.; Hatcher, S. A qualitative study of a blended therapy using problem solving therapy with a customised smartphone app in men who present to hospital with intentional self-harm. Evid.-Based Ment. Health 2017, 20, 118–122. [Google Scholar] [CrossRef]
- Mayer, R.C.; Davis, J.H.; Schoorman, F.D. An integrative model of organizational trust. Acad. Manag. Rev. 1995, 20, 709–734. [Google Scholar] [CrossRef]
- Berry, D.C.; Butler, L.T.; De Rosis, F. Evaluating a realistic agent in an advice-giving task. Int. J. Hum.-Comput. Stud. 2005, 63, 304–327. [Google Scholar] [CrossRef]
- Morency, L.-P.; Stratou, G.; DeVault, D.; Hartholt, A.; Lhommet, M.; Lucas, G.; Morbini, F.; Georgila, K.; Scherer, S.; Gratch, J. SimSensei Demonstration: A Perceptive Virtual Human Interviewer for Healthcare Applications. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Bailenson, J.N.; Yee, N. Digital Chameleons: Automatic Assimilation of Nonverbal Gestures in Immersive Virtual Environments. Psychol. Sci. 2005, 16, 814–819. [Google Scholar] [CrossRef]
- Herrera, F.; Bailenson, J.; Weisz, E.; Ogle, E.; Zaki, J. Building long-term empathy: A large-scale comparison of traditional and virtual reality perspective-taking. PLoS ONE 2018, 13, e0204494. [Google Scholar]
- Leite, I. Using adaptive empathic responses to improve long-term interaction with social robots. In User Modeling, Adaption and Personalization; Springer: Berlin/Heidelberg, Germany, 2011; pp. 446–449. [Google Scholar]
- Leite, I.; Mascarenhas, S.; Pereira, A.; Martinho, C.; Prada, R.; Paiva, A. “Why Can’t We Be Friends?” An Empathic Game Companion for Long-Term Interaction. In Proceedings of the Intelligent Virtual Agents, Philadelphia, PA, USA, 20–22 September 2010; pp. 315–321. [Google Scholar]
- Bickmore, T.; Schulman, D.; Yin, L. Maintaining engagement in long-term interventions with relational agents. Appl. Artif. Intell. 2010, 24, 648–666. [Google Scholar] [CrossRef]
- Cole-Lewis, H.; Ezeanochie, N.; Turgiss, J. Understanding health behavior technology engagement: Pathway to measuring digital behavior change interventions. JMIR Form. Res. 2019, 3, e14052. [Google Scholar] [CrossRef]
- Huber, M.; van Vliet, M.; Giezenberg, M.; Winkens, B.; Heerkens, Y.; Dagnelie, P.; Knottnerus, J. Towards a ‘patient-centred’ operationalisation of the new dynamic concept of health: A mixed methods study. BMJ Open 2016, 6, e010091. [Google Scholar] [CrossRef] [Green Version]
- Klaassen, R.; Bul, K.; Op den Akker, R.; Van der Burg, G.J.; Kato, P.M.; Di Bitonto, P. Design and evaluation of a pervasive coaching and gamification platform for young diabetes patients. Sensors 2018, 18, 402. [Google Scholar] [CrossRef] [Green Version]
- Op den Akker, H.; op den Akker, R.; Beinema, T.; Banos, O.; Heylen, D.; Bedsted, B.; Pease, A.; Pelachaud, C.; Salcedo, V.T.; Kyriazakos, S. Council of coaches a novel holistic behavior change coaching approach. In Proceedings of the 4th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE, Funchal, Portugal, 22–23 March 2018; pp. 219–226. [Google Scholar]
- Hurmuz, M.Z.M.; Jansen-Kosterink, S.M.; Op den Akker, H.; Hermens, H.J. User experience and potential health effects of a conversational agent-based electronic health intervention: Protocol for an observational cohort study. JMIR Res Protoc. 2020, 9, e16641. [Google Scholar] [CrossRef] [Green Version]
- Harbers, M.; van den Bosch, K.; Meyer, J.-J.C. A Study into Preferred Explanations of Virtual Agent Behavior. In International Workshop on Intelligent Virtual Agents; Springer: Berlin/Heidelberg, Germany, 2009; pp. 132–145. [Google Scholar]
- Porra, J.; Lacity, M.; Parks, M.S. Can Computer Based Human-Likeness Endanger Humanness?”–A Philosophical and Ethical Perspective on Digital Assistants Expressing Feelings They Can’t Have. Inf. Syst. Front. 2019, 22, 533–547. [Google Scholar] [CrossRef] [Green Version]
- Hudlicka, E. Virtual affective agents and therapeutic games. In Artificial Intelligence in Behavioral and Mental Health Care; Elsevier: Hoboken, NJ, USA, 2016; pp. 81–115. [Google Scholar]
- Richards, D.; Dignum, V. Supporting and challenging learners through pedagogical agents: Addressing ethical issues through designing for values. Br. J. Educ. Technol. 2019, 50, 2885–2901. [Google Scholar] [CrossRef]
- Floridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; Pagallo, U.; Rossi, F. AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds Mach. 2018, 28, 689–707. [Google Scholar] [CrossRef] [Green Version]
ECA/XA | Target Behaviour | Interactivity | Main Design Strategy/Theory | Measures | ||
---|---|---|---|---|---|---|
User Input | ECA Output | User-Agent Relationship | Behaviour Change | |||
ECA Greta [140] | Healthy eating | Multiple choice | Facial expressions and spoken utterances (TTS) | Adaptive emotional expression | 1 question each on liking and trust | Likelihood of following the advice after the interaction |
ECA Laura [109] | Exercise | Multiple choice | Facial expressions, movement of body, hand and head, and spoken utterance (TTS) | Relational cues, WA | WAI, liking the agent | Daily walking steps |
ECA Elizabeth [112] | Exercising | Multiple choice (spoken) | Spoken utterances (WoZ) | Relational cue, WA | Bond from WA | A change in attitude towards exercise |
ECA Ellie [141] | PTSD | Video, voice, natural language | Facial expressions, movement of body, hand and head, and spoken utterance (TTS) | Empathy | Rapport | Willingness to disclose |
ECA Karen [115] | Physical activity, diet | Multiple choice (spoken) | Spoken utterance (TTS) | TTM, social cognitive theory and motivational interviewing, WA | Self-report satisfaction | Number of steps, and amount of fruit and vegetables consumed |
ECA Amy [119] | Excessive alcohol consumption | Facial expression | Facial expressions and spoken utterance (TTS) | Empathy | 1 trust question, social presence | - |
ECA Tinna [120] | Substance use | Speech | Spoken utterance (TTS) | Motivational interviewing | 2 trust, 4 relationship questions | - |
ECA Dr Evie [108] | Pediatric incontinence | Multiple choice (spoken) | Spoken utterance (TTS) and text | WA, empathy | WAI | Increased adherence, reduced incontinence |
XA Nao [95] | Education on Type II diabetes | None—no interaction | Spoken utterance (TTS) and text | GHT to measure preference for Goal or belief based explanations | - | - |
XA Sarah [132,133] | Social interaction, healthy eating, exercise, caffeine reduction | Multiple choice (spoken) | Spoken utterance (TTS) and text | WA, reason explanation, relational cues/empathy | WAI, trustworthiness (ability, benevolence and integrity) | Change in behaviour intention for the 4 behaviours |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulrahman, A.; Richards, D. In Search of Embodied Conversational and Explainable Agents for Health Behaviour Change and Adherence. Multimodal Technol. Interact. 2021, 5, 56. https://doi.org/10.3390/mti5090056
Abdulrahman A, Richards D. In Search of Embodied Conversational and Explainable Agents for Health Behaviour Change and Adherence. Multimodal Technologies and Interaction. 2021; 5(9):56. https://doi.org/10.3390/mti5090056
Chicago/Turabian StyleAbdulrahman, Amal, and Deborah Richards. 2021. "In Search of Embodied Conversational and Explainable Agents for Health Behaviour Change and Adherence" Multimodal Technologies and Interaction 5, no. 9: 56. https://doi.org/10.3390/mti5090056
APA StyleAbdulrahman, A., & Richards, D. (2021). In Search of Embodied Conversational and Explainable Agents for Health Behaviour Change and Adherence. Multimodal Technologies and Interaction, 5(9), 56. https://doi.org/10.3390/mti5090056