Cervical and Thoracic Spine Mobility in Rotator Cuff Related Shoulder Pain: A Comparative Analysis with Asymptomatic Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Inclusion and Exclusion Criteria
2.3. Procedures
2.3.1. Cervical Active ROM (AROM)
2.3.2. Thoracic AROM
2.4. Sample Size
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luime, J.J.; Koes, B.W.; Hendriksen, I.J.M.; Burdorf, A.; Verhagen, A.P.; Miedema, H.S.; Verhaar, J.A.N. Prevalence and incidence of shoulder pain in the general population; a systematic review. Scand. J. Rheumatol. 2004, 33, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Littlewood, C.; May, S.; Walters, S. Epidemiology of rotator cuff tendinopathy: A systematic review. Shoulder Elb. 2013, 5, 256–265. [Google Scholar] [CrossRef]
- Lewis, J. Rotator cuff related shoulder pain: Assessment, management and uncertainties. Man. Ther. 2016, 23, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.N.; van Griensven, H.; Lewis, J. Rotator cuff related shoulder pain: An update of potential pathoaetiological factors. New Zeal J. Physiother. 2022, 50, 82–93. [Google Scholar] [CrossRef]
- Whittle, S.; Buchbinder, R. Rotator cuff disease. Ann. Intern. Med. 2015, 162, ITC1–ITC14. [Google Scholar] [CrossRef] [PubMed]
- Diercks, R.; Bron, C.; Dorrestijn, O.; Meskers, C.; Naber, R.; De Ruiter, T.; Willems, J.; Winters, J.; Van Der Woude, H.J. Guideline for diagnosis and treatment of subacromial pain syndrome: A multidisciplinary review by the Dutch Orthopaedic Association. Acta Orthop. 2014, 85, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Requejo-Salinas, N.; Lewis, J.; Michener, L.A.; La Touche, R.; Fernández-Matías, R.; Tercero-Lucas, J.; Camargo, P.R.; Bateman, M.; Struyf, F.; Roy, J.S.; et al. International physical therapists consensus on clinical descriptors for diagnosing rotator cuff related shoulder pain: A Delphi study. Braz. J. Phys. Ther. 2022, 26, 100395. [Google Scholar] [CrossRef]
- Sejersen, M.H.J.; Frost, P.; Hansen, T.B.; Deutch, S.R.; Svendsen, S.W. Proteomics perspectives in rotator cuff research a systematic review of gene expression and protein composition in human tendinopathy. PLoS ONE 2015, 10, e0119974. [Google Scholar] [CrossRef]
- Russell, R.D.; Knight, J.R.; Mulligan, E.; Khazzam, M.S. Structural integrity after rotator cuff repair does not correlate with patient function and pain: A meta-analysis. J. Bone Jt. Surg. Am. 2014, 96, 265–271. [Google Scholar] [CrossRef]
- Minagawa, H.; Yamamoto, N.; Abe, H.; Fukuda, M.; Seki, N.; Kikuchi, K.; Kijima, H.; Itoi, E. Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: From mass-screening in one village. J. Orthop. 2013, 10, 8–12. [Google Scholar] [CrossRef]
- Hegedus, E.J.; Cook, C.; Brennan, M.; Wyland, D.; Garrison, J.C.; Driesner, D. Vascularity and tendon pathology in the rotator cuff: A review of literature and implications for rehabilitation and surgery. Br. J. Sports Med. 2010, 44, 838–847. [Google Scholar] [CrossRef] [PubMed]
- May, S.; Chance-Larsen, K.; Littlewood, C.; Lomas, D.; Saad, M. Reliability of physical examination tests used in the assessment of patients with shoulder problems: A systematic review. Physiotherapy 2010, 96, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Tempelhof, S.; Rupp, S.; Seil, R. Age-related prevalence of rotator cuff tears in asymptomatic shoulders. J. Shoulder Elb. Surg. 1999, 8, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, E.J.; Goode, A.; Campbell, S.; Morin, A.; Tamaddoni, M.; Moorman, C.T.; Cook, C. Physical examination tests of the shoulder: A systematic review with meta-analysis of individual tests. Br. J. Sports Med. 2008, 42, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, E.J.; Goode, A.P.; Cook, C.E.; Michener, L.; Myer, C.A.; Myer, D.M.; Wright, A.A. Which physical examination tests provide clinicians with the most value when examining the shoulder? Update of a systematic review with meta-analysis of individual tests. Br. J. Sports Med. 2012, 46, 964–978. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Harryman, D.T. Tendons, ligaments, and capsule of the rotator cuff. Gross and microscopic anatomy. J. Bone Jt. Surg. Ser. A 1992, 74, 713–725. [Google Scholar] [CrossRef]
- Clark, J.; Sidles, J.A.; Matsen, F.A. The relationship of the glenohumeral joint capsule to the rotator cuff. Clin. Orthop. Relat. Res. 1990, 254, 29–34. [Google Scholar] [CrossRef]
- Boettcher, C.E.; Ginn, K.A.; Cathers, I. The ‘empty can’ and ‘full can’ tests do not selectively activate supraspinatus. J. Sci. Med. Sport. 2009, 12, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S. Rotator cuff tendinopathy/subacromial impingement syndrome: Is it time for a new method of assessment? Br. J Sports Med. 2009, 43, 259–264. [Google Scholar] [CrossRef]
- McLean, S.M.; Moffett, J.K.; Sharp, D.M.; Gardiner, E. An investigation to determine the association between neck pain and upper limb disability for patients with non-specific neck pain: A secondary analysis. Man. Ther. 2011, 16, 434–439. [Google Scholar] [CrossRef]
- Hwang, S.; Mun, M.-H. Relationship of neck disability index, shoulder pain and disability index, and visual analogue scale in individuals with chronic neck pain. Phys. Ther. Rehabil. Sci. 2013, 2, 111–114. [Google Scholar] [CrossRef]
- Vogt, M.T.; Simonsick, E.M.; Harris, T.B.; Nevitt, M.C.; Kang, J.D.; Rubin, S.M.; Kritchevsky, S.B.; Newman, A.B. Neck and shoulder pain in 70- to 79-year-old men and women: Findings from the health, aging and body composition study. Spine J. 2003, 3, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.L.; Theologis, A.A.; Tay, B.; Feeley, B.T. The association between cervical spine pathology and rotator cuff dysfunction. J. Spinal Disord. Tech. 2015, 28, E206–E211. [Google Scholar] [CrossRef] [PubMed]
- Littlewood, C.; Bateman, M.; Brown, K.; Bury, J.; Mawson, S.; May, S.; Walters, S.J. A self-managed single exercise programme versus usual physiotherapy treatment for rotator cuff tendinopathy: A randomised controlled trial (the SELF study). Clin. Rehabil. 2016, 30, 686–696. [Google Scholar] [CrossRef]
- Crawshaw, D.P.; Helliwell, P.S.; Hensor, E.M.A.; Hay, E.M.; Aldous, S.J.; Conaghan, P.G. Exercise therapy after corticosteroid injection for moderate to severe shoulder pain: Large pragmatic randomised trial. BMJ 2010, 340, 30. [Google Scholar] [CrossRef] [PubMed]
- Ekeberg, O.M.; Bautz-Holter, E.; Tveitå, E.K.; Juel, N.G.; Kvalheim, S.; Brox, J.I. Subacromial ultrasound guided or systemic steroid injection for rotator cuff disease: Randomised double blind study. BMJ 2009, 338, 273–275. [Google Scholar] [CrossRef]
- Date, E.; Gray, L. Electrodiagnostic evidence for cervical radiculopathy and suprascapular neuropathy in shoulder pain. Electromyogr. Clin. Neurophysiol. 1996, 36, 333–339. [Google Scholar] [PubMed]
- Gumina, S.; Carbone, S.; Arceri, V.; Rita, A.; Vestri, A.R.; Postacchini, F. The relationship between chronic type III acromioclavicular joint dislocation and cervical spine pain. BMC Musculoskelet. Disord. 2009, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H.J.; Jull, G.A. The influence of thoracic posture and movement on range of arm elevation. Physiother. Theory Pract. 1993, 9, 143–148. [Google Scholar] [CrossRef]
- Kebaetse, M.; McClure, P.; Pratt, N.A. Thoracic position effect on shoulder range of motion, strength, and three-dimensional scapular kinematics. Arch. Phys. Med. Rehabil. 1999, 80, 945–950. [Google Scholar] [CrossRef]
- Stewart, S.G.; Jull, G.A.; Ng, J.K.F.; Willems, J.M. An initial analysis of thoracic spine movement during unilateral arm elevation. J. Man. Manip. Ther. 1995, 3, 15–20. [Google Scholar] [CrossRef]
- Barrett, E.; O’Keeffe, M.; O’Sullivan, K.; Lewis, J.; McCreesh, K. Is thoracic spine posture associated with shoulder pain, range of motion and function? A systematic review. Man. Ther. 2016, 26, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Rivett, D.A.; McKeirnan, S.; Smith, L.; Snodgrass, S.J. Relationship between shoulder impingement syndrome and thoracic posture. Phys. Ther. 2020, 100, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Manoso-Hernando, D.; Bailón-Cerezo, J.; Angulo-Díaz-Parreño, S.; Reina-Varona, Á.; Elizagaray-García, I.; Gil-Martínez, A. Shoulder mobility and strength impairments in patients with rotator cuff related shoulder pain: A systematic review and meta analysis. PeerJ 2024, 12, e17604. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.; Gibson, J.; Brownson, P.; Thomas, M.; Rangan, A.; Carr, A.J.; Rees, J.L. Subacromial shoulder pain. Shoulder Elb. 2015, 7, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.; Salt, E.; Lynch, G.; Littlewood, C. Screening of the cervical spine in subacromial shoulder pain: A systematic review. Shoulder Elb. 2019, 11, 305–315. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Roach, K.E.; Budiman-Mak, E.; Songsiridej, N.; Lertratanakul, Y. Development of a shoulder pain and disability index. Arthritis Care Res. 1991, 4, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Vernon, H.; Mior, S. The Neck Disability Index: A study of reliability and validity. J. Manip. Physiol. Ther. 1991, 14, 409–415. [Google Scholar]
- Ware, J.E.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef]
- Neblett, R. The central sensitization inventory: A user’s manual. J. Appl. Biobehav. Res. 2018, 23, e12123. [Google Scholar] [CrossRef]
- Jensen, M.P.; Karoly, P.; Braver, S. The measurement of clinical pain intensity: A comparison of six methods. Pain 1986, 27, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Blanpied, P.R.; Gross, A.R.; Elliott, J.M.; Devaney, L.L.; Clewley, D.; Walton, D.M.; Sparks, C.; Robertson, E.K. Neck Pain: Revision 2017. J. Orthop. Sports Phys. Ther. 2017, 47, A1–A83. [Google Scholar] [CrossRef]
- Fletcher, J.P.; Bandy, W.D. Intrarater reliability of CROM measurement of cervical spine active range of motion in persons with and without neck pain. J. Orthop. Sports Phys. Ther. 2008, 38, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Hole, D.E.; Cook, J.M.; Bolton, J.E. Reliability and concurrent validity of two instruments for measuring cervical range of motion: Effects of age and gender. Man. Ther. 1995, 1, 36–42. [Google Scholar] [CrossRef]
- Youdas, J.W.; Carey, J.R.; Garrett, T.R. Reliability of measurements of cervical spine range of motion—Comparison of three methods. Phys. Ther. 1991, 71, 98–106. [Google Scholar] [CrossRef]
- Reese, N.B.; Bandy, W.D. Joint Range of Motion and Muscle Length Testing, 3rd ed.; W.B. Saunders Co.: Phyladelphia, PA, USA, 2016. [Google Scholar]
- Elizagaray-García, I.; Obispo-Villamayor, Á.; Prats-Martínez, C.; Prieto-Hernández, G.; Carvalho, G.F. Measurement proprieties of the CROM instrument for assessing head posture, neck retraction and protraction. Musculoskelet. Sci. Pract. 2024, 71, 102950. [Google Scholar] [CrossRef]
- Youdas, J.W.; Garrett, T.R.; Suman, V.J.; Bogard, C.L.; Hallman, H.O.; Carey, J.R. Normal range of motion of the cervical spine: An initial goniometric study. Phys. Ther. 1992, 72, 770–780. [Google Scholar] [CrossRef]
- Theisen, C.; Van Wagensveld, A.; Timmesfeld, N.; Efe, T.; Heyse, T.J.; Fuchs-Winkelmann, S.; Schofer, M.D. Co-occurrence of outlet impingement syndrome of the shoulder and restricted range of motion in the thoracic spine—A prospective study with ultrasound-based motion analysis. BMC Musculoskelet. Disord. 2010, 11, 135. [Google Scholar] [CrossRef]
- do Valle, M.B.; Detogni Schmit, E.F.; Sedrez, J.A.; Candotti, C.T. Assessment of thoracic and lumbar spine range of motion: Systematic review with meta-analysis. J. Phys. Educ. 2019, 29, e2946. [Google Scholar]
- Johnson, K.D.; Kim, K.M.; Yu, B.K.; Saliba, S.A.; Grindstaff, T.L. Reliability of thoracic spine rotation range-of-motion measurements in healthy adults. J. Athl. Train. 2012, 47, 52. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; Chapman and Hall: New York, NY, USA, 1990. [Google Scholar] [CrossRef]
- Sani, F.; Todman, J.B. Experimental Design and Statistics for Psychology: A First Course; John Wiley & Sons: Oxford, UK, 2006. [Google Scholar]
- Valiente, L.P.; Tejedor, I.H. Bioestadisticas sin Dificultades Matematicas; Ediciones Díaz de Santos: Bogota, Colombia, 2010. [Google Scholar]
- Kiernan, D. Chapter 7: Correlation and simple linear regression. In Textbooks OS; Open SUNY Textbooks: New York, NY, USA, 2014. [Google Scholar]
- Katsuura, Y.; Bruce, J.; Taylor, S.; Gullota, L.; Kim, H.J. Overlapping, Masquerading, and causative cervical spine and shoulder pathology: A systematic review. Glob. Spine J. 2020, 10, 195–208. [Google Scholar] [CrossRef]
- Gorski, J.M.; Schwartz, L.H. Shoulder impingement presenting as neck pain. J. Bone Jt. Surg. Am. 2003, 85, 635–638. [Google Scholar] [CrossRef]
- Moseley, G.L.; Flor, H. Targeting cortical representations in the treatment of chronic pain: A review. Neurorehabilit. Neural Repair 2012, 26, 646–652. [Google Scholar] [CrossRef]
- Libardoni, T.d.C.; Armijo-Olivo, S.; Bevilaqua-Grossi, D.; de Oliveira, A.S. Relationship between intensity of neck pain and disability and shoulder pain and disability in individuals with subacromial impingement symptoms: A Cross-Sectional Study. J. Manipulative Physiol. Ther. 2020, 43, 691–699. [Google Scholar] [CrossRef]
- Shaghayeghfard, B.; Ahmadi, A.; Maroufi, N.; Sarrafzadeh, J. Evaluation of forward head posture in sitting and standing positions. Eur. Spine J. 2016, 25, 3577–3582. [Google Scholar] [CrossRef]
- Choi, M.; Chung, J. Biomechanical and functional analysis of the shoulder complex and thoracic spine in patients with subacromial impingement syndrome: A case control study. Medicine 2023, 102, E32760. [Google Scholar] [CrossRef]
- Howe, L.; Read, P. Thoracic spine function: Assessment and self-management. Prof. J. Strength Cond. 2015, 39, 21–31. [Google Scholar]
- Chester, R.; Jerosch-Herold, C.; Lewis, J.; Shepstone, L. Psychological factors are associated with the outcome of physiotherapy for people with shoulder pain: A multicentre longitudinal cohort study. Br. J. Sports Med. 2018, 52, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Coronado, R.A.; George, S.Z. The central sensitization inventory and pain Sensitivity questionnaire: An exploration of construct validity and associations with widespread pain sensitivity among individuals with shoulder pain. Musculoskelet. Sci. Pract. 2018, 36, 61. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Calderon, J.; Meeus, M.; Struyf, F.; Miguel Morales-Asencio, J.; Gijon-Nogueron, G.; Luque-Suarez, A. The role of psychological factors in the perpetuation of pain intensity and disability in people with chronic shoulder pain: A systematic review. BMJ Open 2018, 8, e020703. [Google Scholar] [CrossRef] [PubMed]
RCRSP (n = 32) Mean ± SD | ASYM (n = 32) Mean ± SD | Statistic | p-Value | |
---|---|---|---|---|
Age (years) | 55.47 ± 11.03 | 56.75 ± 13.41 | t = 0.41 | 0.68 |
BMI | 27.52 ± 5.59 | 24.12 ± 3.09 | t = 3.01 | 0.04 |
Onset of pain (months) | 39.00 ± 20.04 | - | ||
VAS rest | 0.88 ± 1.50 | - | ||
VAS activity | 5.97 ± 1.65 | - | ||
Daily life impact | 5.72 ± 2.19 | - | ||
CSI | 47.84 ± 14.38 | 19.72 ± 13.26 | t = −8.13 | <0.01 |
Total SF-12 | 29.94 ± 6.63 | 42.63 ± 3.40 | t = 9.63 | <0.01 |
% SF-12 | 51.09% ± 19.09% | 87.44% ± 9.69% | t = 9.61 | <0.01 |
SPADI | 58.68 ± 19.38 | - | ||
Gender (female) | 25 (78.12%) | 24 (75.00%) | X2 = 0.08 | 0.77 |
Dom (right hand) | 30 (93.75%) | 31 (96.87%) | X2 = 0.35 | 0.55 |
RCRSP GROUP Mean ± SD (SEM) n = 32 | CONTROL GROUP Mean ± SD (SEM) n = 32 | 95% CI | Effect Size | Statistic | |
---|---|---|---|---|---|
Cervical flexo-extension (degrees) | 112.47 ± 22.07 (3.49) | 128.5 ± 17.85 (2.92) | 6.01 to 26.08 | d = 0.80 | t = 3.20 ** |
Cervical rotation (degrees) | 111.14 ± 22.98 (3.86) | 130.23 ± 21.20 (3.69) | 8.04 to 30.14 | d = 0.86 | t = 3.45 ** |
Cervical lateroflexion (degrees) | 68.85 ± 17.58 (2.87) | 78.43 ± 20.86 (3.44) | −0.05 to 19.22 | d = 0.50 | t = 1.99 |
Neutral position (cm) | 18.30 ± 2.28 (0.39) | 17.79 ± 1.99 (0.38) | −1.58 to 0.56 | d = −0.24 | t = −0.95 |
Protraction (cm) | 21.36 ± 2.49 (0.40) | 21.54 ± 2.53 (0.45) | −1.07 to 1.44 | d = 0.07 | t = 0.30 |
Retraction (cm) | 16.08 ± 2.12 (0.36) | 15.47 ± 1.79 (0.32) | −1.63 to 0.39 | d = −0.30 | t = −1.22 |
Difference (cm) | 5.27 ± 2.03 (0.37) | 6.07 ± 2.36 (0.40) | −0.37 to 1.98 | d = −0.15 | t = 1.37 |
NDI | 17.56 ± 7.25 (1.28) | 2.47 ± 3.25 (0.52) | −17.90 to −12.29 | d = −2.69 | t = −10.75 ** |
Thoracic flexion (cm) | 33.02 ± 1.14 (0.19) | 34.14 ± 1.01 (0.19) | 0.58 to 1.66 | d = 1.04 | t = 4.16 ** |
Thoracic extension (cm) | 28.63 ± 0.89 (0.14) | 27.37 ± 0.89 (0.14) | −1.70 to −0.81 | d = −1.40 | t = −5.62 ** |
Thoracic right rotation (degrees) | 40.53 ± 10.39 (1.74) | 54.45 ± 9.75 (1.80) | 8.88 to 18.96 | d = 1.38 | t = 5.58 ** |
Thoracic left rotation (degrees) | 39.00 ± 11.26 (1.92) | 54.10 ± 10.51 (1.92) | 9.66 to 20.54 | d = 1.39 | t = 5.55 ** |
Pearson’s Correlation | Cx-F/E | Cx-Rot | Cx-LF | Tx-F | Tx-E | Tx-RR | Tx-LR | SPADI | NDI | CSI | SF-12 |
---|---|---|---|---|---|---|---|---|---|---|---|
Cx-F/E | 1 | ||||||||||
Cx-Rot | 0.664 ** | 1 | |||||||||
Cx-LF | 0.541 ** | 0.666 ** | 1 | ||||||||
Tx-F | 0.369 ** | 0.367 ** | 0.056 | 1 | |||||||
Tx-E | −0.404 ** | −0.484 ** | −0.264 * | −0.309 * | 1 | ||||||
Tx-RR | 0.455 ** | 0.504 ** | 0.224 | 0.430 ** | −0.582 ** | 1 | |||||
Tx-LR | 0.555 ** | 0.575 ** | 0.352 ** | 0.439 ** | −0.546 ** | 0.876 ** | 1 | ||||
SPADI | −0.053 | −0.042 | −0.046 | −0.177 | −0.038 | 0.036 | −0.121 | 1 | |||
NDI | −0.407 ** | −0.410 ** | −0.265 * | −0.403 ** | 0.642 ** | −0.628 ** | −0.621 ** | 0.316 | 1 | ||
CSI | −0.363 ** | −0.364 ** | −0.219 | −0.386 ** | 0.511 ** | −0.595 ** | −0.568 ** | 0.343 | 0.818 ** | 1 | |
SF-12 | 0.395 ** | 0.431 ** | 0.224 | 0.387 ** | −0.681 ** | 0.544 ** | 0.545 ** | −0.392 * | −0.812 ** | −0.757 ** | 1 |
Regression Coefficient (B) | Standarized Coefficient (β) | p-Value | VIF | Overall Model | |||||
---|---|---|---|---|---|---|---|---|---|
Adjusted R2 | F | Durbin-Watson | |||||||
Dependent variable: NDI | |||||||||
RCRSP and ASYM GROUP | MODEL | Predictor variables | 0.75 | 94.60 | 1.60 | ||||
CSI | 0.23 | 0.48 | <0.01 | 2.34 | |||||
SF-12 | −0–52 | −0.45 | <0.01 | 2.34 | |||||
Excluded variable | |||||||||
Thoracic right rotation | −0.67 | 0.33 | 1.20 | ||||||
Thoracic left rotation | −0.51 | 0.47 | 1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manoso-Hernando, D.; Bailón-Cerezo, J.; Elizagaray-García, I.; Achútegui-García-Matres, P.; Suárez-Díez, G.; Gil-Martínez, A. Cervical and Thoracic Spine Mobility in Rotator Cuff Related Shoulder Pain: A Comparative Analysis with Asymptomatic Controls. J. Funct. Morphol. Kinesiol. 2024, 9, 128. https://doi.org/10.3390/jfmk9030128
Manoso-Hernando D, Bailón-Cerezo J, Elizagaray-García I, Achútegui-García-Matres P, Suárez-Díez G, Gil-Martínez A. Cervical and Thoracic Spine Mobility in Rotator Cuff Related Shoulder Pain: A Comparative Analysis with Asymptomatic Controls. Journal of Functional Morphology and Kinesiology. 2024; 9(3):128. https://doi.org/10.3390/jfmk9030128
Chicago/Turabian StyleManoso-Hernando, Daniel, Javier Bailón-Cerezo, Ignacio Elizagaray-García, Pablo Achútegui-García-Matres, Guillermo Suárez-Díez, and Alfonso Gil-Martínez. 2024. "Cervical and Thoracic Spine Mobility in Rotator Cuff Related Shoulder Pain: A Comparative Analysis with Asymptomatic Controls" Journal of Functional Morphology and Kinesiology 9, no. 3: 128. https://doi.org/10.3390/jfmk9030128
APA StyleManoso-Hernando, D., Bailón-Cerezo, J., Elizagaray-García, I., Achútegui-García-Matres, P., Suárez-Díez, G., & Gil-Martínez, A. (2024). Cervical and Thoracic Spine Mobility in Rotator Cuff Related Shoulder Pain: A Comparative Analysis with Asymptomatic Controls. Journal of Functional Morphology and Kinesiology, 9(3), 128. https://doi.org/10.3390/jfmk9030128