Convolutional Neural Network-Based Automated Segmentation of Skeletal Muscle and Subcutaneous Adipose Tissue on Thigh MRI in Muscular Dystrophy Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MRI Acquisition
- -
- axial T1 weighted in- and out-of-phase (dual-echo);
- -
- axial short-tau inversion recovery (STIR);
- -
- axial diffusion-weighted imaging (DWI) with b values 0 and 500.
2.3. Manual Segmentation
2.4. Image Preprocessing
2.5. Automatic Segmentation
2.6. Performance Evaluation
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lovering, R.M.; Porter, N.C.; Bloch, R.J. The Muscular Dystrophies: From Genes to Therapies. Available online: http://www.mdausa.org/ (accessed on 15 March 2024).
- Von der Hagen, M.; Schallner, J.; Kaindl, A.; Koehler, K.; Mitzscherling, P.; Abicht, A.; Grieben, U.; Korinthenberg, R.; Kress, W.; von Moers, A.; et al. Facing the genetic heterogeneity in neuromuscular disorders: Linkage analysis as an economic diagnostic approach towards the molecular diagnosis. Neuromuscul. Disord. 2006, 6, 4–13. [Google Scholar] [CrossRef]
- Kanagawa, M.; Toda, T. The genetic and molecular basis of muscular dystrophy: Roles of cell-matrix linkage in the pathogenesis. J. Hum. Genet. 2006, 51, 915–926. [Google Scholar] [CrossRef]
- Jones, K.M.; O’grady, G.; Rodrigues, M.J.; Ranta, A.; Roxburgh, R.H.; Love, D.R.; Theadomon, A. Impacts for Children Living with Genetic Muscle Disorders and their Parents—Findings from a Population-Based Study. J. Neuromuscul. Dis. 2018, 5, 341–352. [Google Scholar] [CrossRef]
- Dabaj, I.; Ducatez, F.; Marret, S.; Bekri, S.; Tebani, A. Neuromuscular disorders in the omics era. Clin. Chim. Acta 2024, 553, 117691. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Manera, J.; Llauger, J.; Gallardo, E.; Illa, I. Muscle MRI in muscular dystrophies. Acta Myol. 2015, 34, 95–108. [Google Scholar]
- Schulze, M.; Kötter, I.; Ernemann, U.; Fenchel, M.; Tzaribatchev, N.; Claussen, C.D.; Horger, M. MRI findings in inflammatory muscle diseases and their noninflammatory mimics. Am. J. Roentgenol. 2009, 192, 1708–1716. [Google Scholar] [CrossRef] [PubMed]
- Schlaeger, S.; Sollmann, N.; Zoffl, A.; Becherucci, E.A.; Weidlich, D.; Kottmaier, E.; Riederer, I.; Greve, T.; Montagnese, F.; Deschauer, M.; et al. Quantitative muscle mri in patients with neuromuscular diseases—Association of muscle proton density fat fraction with semi-quantitative grading of fatty infiltration and muscle strength at the thigh region. Diagnostics 2021, 11, 1056. [Google Scholar] [CrossRef] [PubMed]
- Radaelli, R.; Taaffe, D.R.; Newton, R.U.; Galvão, D.A.; Lopez, P. Exercise effects on muscle quality in older adults: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 21085. [Google Scholar] [CrossRef] [PubMed]
- Hortobágyi, T.; Vetrovsky, T.; Brach, J.S.; van Haren, M.; Volesky, K.; Radaelli, R.; Lopez, P.; Granacher, U. Effects of Exercise Training on Muscle Quality in Older Individuals: A Systematic Scoping Review with Meta-Analyses. Sports Med. Open 2023, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Xing, F.; Batra, A.; Liu, F.; Walter, G.A.; Vandenborne, K.; Yang, L. Texture analysis for muscular dystrophy classification in MRI with improved class activation mapping. Pattern Recognit 2019, 86, 368–375. [Google Scholar] [CrossRef]
- D’Antonoli, T.A.; Santini, F.; Deligianni, X.; Alzamora, M.G.; Rutz, E.; Bieri, O.; Brunner, R.; Weidensteiner, C. Combination of Quantitative MRI Fat Fraction and Texture Analysis to Evaluate Spastic Muscles of Children With Cerebral Palsy. Front. Neurol. 2021, 12, 633808. [Google Scholar] [CrossRef]
- Aringhieri, G.; Fanni, S.C.; Febi, M.; Colligiani, L.; Cioni, D.; Neri, E. The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment. Diagnostics 2022, 12, 3002. [Google Scholar] [CrossRef] [PubMed]
- Di Salle, G.; Tumminello, L.; Laino, M.E.; Shalaby, S.; Aghakhanyan, G.; Fanni, S.C.; Febi, M.; Shortrede, J.E.; Miccoli, M.; Faggioni, L.; et al. Accuracy of Radiomics in Predicting IDH Mutation Status in Diffuse Gliomas: A Bivariate Meta-Analysis. Radiol. Artif. Intell. 2024, 6, e220257. [Google Scholar] [CrossRef] [PubMed]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Navab, N.; Hornegger, J.; Wells, W.M.; Frangi, A.F. LNCS 9351—Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. 2015. Available online: http://www.springer.com/series/7412 (accessed on 15 March 2024).
- Catanese, S.; Aringhieri, G.; Vivaldi, C.; Salani, F.; Vitali, S.; Pecora, I.; Massa, V.; Lencioni, M.; Vasile, E.; Tintori, R.; et al. Role of baseline computed-tomography-evaluated body composition in predicting outcome and toxicity from first-line therapy in advanced gastric cancer patients. J. Clin. Med. 2021, 10, 1079. [Google Scholar] [CrossRef]
- Khristenko, E.; Sinitsyn, V.; Rieden, T.; Girod, P.; Kauczor, H.U.; Mayer, P.; Klauss, M.; Lyadov, V. CT-based screening of sarcopenia and its role in cachexia syndrome in pancreatic cancer. PLoS ONE 2024, 19, e0291185. [Google Scholar] [CrossRef] [PubMed]
- Salam, B.; Al Zaidi, M.; Sprinkart, A.M.; Nowak, S.; Theis, M.; Kuetting, D.; Aksoy, A.; Nickenig, G.; Attenberger, U.; Zimmer, S.; et al. Opportunistic CT-derived analysis of fat and muscle tissue composition predicts mortality in patients with cardiogenic shock. Sci. Rep. 2023, 13, 22293. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, Y.S.; Kim, E.Y.; Jin, W. Prognostic significance of CT-determined sarcopenia in patients with advanced gastric cancer. PLoS ONE 2018, 13, e0202700. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Luo, W.; Huang, Y.; Song, L.; Mei, Y. Sarcopenia as a prognostic indicator in colorectal cancer: An updated meta-analysis. Front. Oncol. 2023, 13, 1247341. [Google Scholar] [CrossRef]
- Harneshaug, M.; Benth, J.S.; Kirkhus, L.; Gronberg, B.H.; Bergh, S.; Rostoft, S.; Slaaen, M. CT Derived Muscle Measures, Inflammation, and Frailty in a Cohort of Older Cancer Patients. In Vivo 2020, 34, 3565–3572. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, H.; Kim, S.; Cha, Y.; Kim, J.-T.; Kim, J.-W.; Ha, Y.-C.; Yoo, J.-I. Precise individual muscle segmentation in whole thigh CT scans for sarcopenia assessment using U-net transformer. Sci. Rep. 2024, 14, 3301. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Camedda, R.; Frantellizzi, V.; Urbano, N.; De Vincentis, G.; Schillaci, O. Functional Imaging in Musculoskeletal Disorders in Menopause. Semin. Nucl. Med. 2024, 54, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, S.; Aringhieri, G.; Mugellini, B.; Torri, F.; Minichilli, F.; Tripoli, A.; Cardelli, C.; Cioffi, E.; Zampa, V.; Siciliano, G.; et al. The role of magnetic resonance imaging in the diagnostic work-out of myopathies: Differential diagnosis between inflammatory myopathies and muscular dystrophies MRI in inflammatory myopathies and muscular dystrophies. Clin. Exp. Rheumatol. 2022, 41, 301–308. [Google Scholar]
- Wattjes, M.P.; Kley, R.A.; Fischer, D. Neuromuscular imaging in inherited muscle diseases. Eur. Radiol. 2010, 20, 2447–2460. [Google Scholar] [CrossRef] [PubMed]
- Gaj, S.; Eck, B.L.; Xie, D.; Lartey, R.; Lo, C.; Zaylor, W.; Yang, M.; Nakamura, K.; Winalski, C.S.; Spindler, K.P.; et al. Deep learning-based automatic pipeline for quantitative assessment of thigh muscle morphology and fatty infiltration. Magn. Reason. Med. 2023, 89, 2441–2455. [Google Scholar] [CrossRef] [PubMed]
- Okorie, A.; Makrogiannis, S.; Spencer, R.; Kalyani, R.; Ferrucci, L. Semantic segmentation of individual muscle groups in 3D thigh MRI. In Proceedings Volume 12464, Medical Imaging 2023: Image Processing; 124643D; SPIE: San Diego, CA, USA, 2023. [Google Scholar]
- Ding, J.; Cao, P.; Chang, H.C.; Gao, Y.; Chan, S.H.S.; Vardhanabhuti, V. Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI. Insights Imaging 2020, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Agosti, A.; Shaqiri, E.; Paoletti, M.; Solazzo, F.; Bergsland, N.; Colelli, G.; Savini, G.; Muzic, S.I.; Santini, F.; Deligianni, X.; et al. Deep learning for automatic segmentation of thigh and leg muscles. Magn. Reson. Mater. Phys. Biol. Med. 2022, 35, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Amati, F.; Pennant, M.; Azuma, K.; Dubé, J.J.; Toledo, F.G.; Rossi, A.P.; Kelley, D.E.; Goodpaster, B.H. Lower thigh subcutaneous and higher visceral abdominal adipose tissue content both contribute to insulin resistance. Obesity 2012, 20, 1115–1117. [Google Scholar] [CrossRef]
- Aringhieri, G.; Di Salle, G.; Catanese, S.; Vivaldi, C.; Salani, F.; Vitali, S.; Caccese, M.; Vasile, E.; Genovesi, V.; Fornaro, L.; et al. Abdominal Visceral-to-Subcutaneous Fat Volume Ratio Predicts Survival and Response to First-Line Palliative Chemotherapy in Patients with Advanced Gastric Cancer. Cancers 2023, 15, 5391. [Google Scholar] [CrossRef]
- Hassler, E.M.; Deutschmann, H.; Almer, G.; Renner, W.; Mangge, H.; Herrmann, M.; Leber, S.; Michenthaler, M.; Staszewski, A.; Gunzer, F.; et al. Distribution of subcutaneous and intermuscular fatty tissue of the mid-thigh measured by MRI-A putative indicator of serum adiponectin level and individual factors of cardio-metabolic risk. PLoS ONE 2021, 16, e0259952. [Google Scholar] [CrossRef]
- Yamamoto, A.; Kikuchi, Y.; Kusakabe, T.; Takano, H.; Sakurai, K.; Furui, S.; Oba, H. Imaging spectrum of abnormal subcutaneous and visceral fat distribution. Insights Imaging 2020, 11, 24. [Google Scholar] [CrossRef]
- Qandeel, H.; Chew, C.; Young, D.; O’Dwyer, P.J. Subcutaneous and visceral adipose tissue in patients with primary and recurrent incisional hernia. Hernia 2022, 26, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Ladeiras-Lopes, R.; Sampaio, F.; Bettencourt, N.; Fontes-Carvalho, R.; Ferreira, N.; Leite-Moreira, A.; Gama, V. The Ratio Between Visceral and Subcutaneous Abdominal Fat Assessed by Computed Tomography Is an Independent Predictor of Mortality and Cardiac Events. Rev. Esp. Cardiol. 2017, 70, 331–337. [Google Scholar] [CrossRef] [PubMed]
Demographics | N (%) |
Age (years, mean ± standard deviation) | 32.00 ± 16.80 |
Male | 13 (56) |
Female | 10 (44) |
Caucasian ethnicity | 23 (100) |
Diagnosis | N (%) |
Becker Muscular Dystrophy | 5 (22) |
Facioscapulohumeral muscular dystrophy | 4 (17) |
Spinal muscular atrophy | 3 (13) |
Limb Girdle Muscular dystrophy (LGMD) | 3 (13) |
Glycogen Storage Disease Type II | 2 (9) |
Mitochondrial myopathy | 2 (9) |
RYR1-related myopathies | 2 (9) |
Idiopathic hyperCKemia | 1 (4) |
Duchenne muscular dystrophy | 1 (4) |
SAT * | Muscle | |
---|---|---|
P0 | 0.89 | 0.88 |
P1 | 0.97 | 0.95 |
P2 | 0.95 | 0.97 |
P3 | 0.94 | 0.94 |
P4 | 0.95 | 0.93 |
P5 | 0.95 | 0.95 |
P6 | 0.98 | 0.96 |
P7 | 0.93 | 0.95 |
P8 | 0.95 | 0.94 |
P9 | 0.97 | 0.98 |
P10 | 0.91 | 0.96 |
P11 | 0.94 | 0.95 |
P12 | 0.94 | 0.87 |
P13 | 0.88 | 0.80 |
Median DSC (IQR) | 0.95 (0.02) | 0.95 (0.03) |
SAT * | Anterior | Medial | Posterior | |
---|---|---|---|---|
P0 | 0.88 | 0.90 | 0.38 | 0.01 |
P1 | 0.97 | 0.97 | 0.30 | 0.82 |
P2 | 0.95 | 0.96 | 0.88 | 0.92 |
P3 | 0.94 | 0.90 | 0.90 | 0.95 |
P4 | 0.95 | 0.90 | 0.74 | 0.94 |
P5 | 0.94 | 0.90 | 0.69 | 0.91 |
P6 | 0.98 | 0.93 | 0.70 | 0.91 |
P7 | 0.93 | 0.90 | 0.90 | 0.93 |
P8 | 0.94 | 0.86 | 0.73 | 0.86 |
P9 | 0.97 | 0.96 | 0.89 | 0.91 |
P10 | 0.89 | 0.95 | 0.92 | 0.95 |
P11 | 0.95 | 0.94 | 0.64 | 0.92 |
P12 | 0.95 | 0.80 | 0.76 | 0.77 |
P13 | 0.84 | 0.79 | 0.36 | 0.09 |
Median DSC (IQR) | 0.95 (0.02) | 0.90 (0.05) | 0.7 (0.2) | 0.9 (0.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aringhieri, G.; Astrea, G.; Marfisi, D.; Fanni, S.C.; Marinella, G.; Pasquariello, R.; Ricci, G.; Sansone, F.; Sperti, M.; Tonacci, A.; et al. Convolutional Neural Network-Based Automated Segmentation of Skeletal Muscle and Subcutaneous Adipose Tissue on Thigh MRI in Muscular Dystrophy Patients. J. Funct. Morphol. Kinesiol. 2024, 9, 123. https://doi.org/10.3390/jfmk9030123
Aringhieri G, Astrea G, Marfisi D, Fanni SC, Marinella G, Pasquariello R, Ricci G, Sansone F, Sperti M, Tonacci A, et al. Convolutional Neural Network-Based Automated Segmentation of Skeletal Muscle and Subcutaneous Adipose Tissue on Thigh MRI in Muscular Dystrophy Patients. Journal of Functional Morphology and Kinesiology. 2024; 9(3):123. https://doi.org/10.3390/jfmk9030123
Chicago/Turabian StyleAringhieri, Giacomo, Guja Astrea, Daniela Marfisi, Salvatore Claudio Fanni, Gemma Marinella, Rosa Pasquariello, Giulia Ricci, Francesco Sansone, Martina Sperti, Alessandro Tonacci, and et al. 2024. "Convolutional Neural Network-Based Automated Segmentation of Skeletal Muscle and Subcutaneous Adipose Tissue on Thigh MRI in Muscular Dystrophy Patients" Journal of Functional Morphology and Kinesiology 9, no. 3: 123. https://doi.org/10.3390/jfmk9030123
APA StyleAringhieri, G., Astrea, G., Marfisi, D., Fanni, S. C., Marinella, G., Pasquariello, R., Ricci, G., Sansone, F., Sperti, M., Tonacci, A., Torri, F., Matà, S., Siciliano, G., Neri, E., Santorelli, F. M., & Conte, R. (2024). Convolutional Neural Network-Based Automated Segmentation of Skeletal Muscle and Subcutaneous Adipose Tissue on Thigh MRI in Muscular Dystrophy Patients. Journal of Functional Morphology and Kinesiology, 9(3), 123. https://doi.org/10.3390/jfmk9030123