Effects of 34 Weeks of Military Service on Body Composition and Physical Fitness in Military Cadets of Angola
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. Body Composition
2.3.2. Push-Ups
2.3.3. Medicine Ball Throwing
2.3.4. Countermovement Jump
2.3.5. Two Minutes Sit-Ups
2.3.6. Curl-Ups
2.3.7. Sprint Test
2.3.8. Cardiorespiratory fitness
2.4. Training Program
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okhrimenko, I.; Pavlyk, O.; Tomenko, O.; Rybalko, P.; Cherednichenko, S.; Gvozdetska, S.; Holovchenko, O. Dynamics of indicators of cadets’ physical development and functional status during pentathlon. Int. J. Hum. Mov. Sports Sci. 2021, 9, 814–823. [Google Scholar] [CrossRef]
- Shaver, A.; Brauer, J. Training, technology, and combat effectiveness. Def. Peace Econ. 2012, 23, 583–604. [Google Scholar]
- Giles, G.E.; Hasselquist, L.; Caruso, C.M.; Eddy, M.D. Load Carriage and Physical Exertion Influence Cognitive Control in Military Scenarios. Med. Sci. Sports Exerc. 2019, 51, 2540–2546. [Google Scholar] [CrossRef] [PubMed]
- Pihlainen, K.; Santtila, M.; Vasankari, T.; Häkkinen, K.; Kyröläinen, H. Evaluation of occupational physical load during 6-month international crisis management operation. Int. J. Occup. Med. Environ. Health 2018, 31, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Austin, K.G.; Carvey, C.E.; Farina, E.K.; Lieberman, H.R. Predictors of the relationships between nutritional supplement use and weight-modification goals of U.S. Army soldiers. Int. J. Sport. Nutr. Exerc. Metab. 2013, 23, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Butowicz, C.M.; Hendershot, B.D.; Watson, N.L.; Brooks, D.I.; Goss, D.L.; Whitehurst, R.A.; Harvey, A.D.; Helton, M.S.; Kardouni, J.R.; Garber, M.B.; et al. Pre-neuromusculoskeletal injury Risk factor Evaluation and Post-neuromusculoskeletal injury Assessment for Return-to-duty/activity Enhancement (PREPARE) in military service members: A prospective, observational study protocol. J. Transl. Med. 2022, 20, 619. [Google Scholar] [CrossRef] [PubMed]
- de la Motte, S.J.; Lisman, P.; Gribbin, T.C.; Murphy, K.; Deuster, P.A. Systematic Review of the Association Between Physical Fitness and Musculoskeletal Injury Risk: Part 3-Flexibility, Power, Speed, Balance, and Agility. J. Strength Cond. Res. 2019, 33, 1723–1735. [Google Scholar] [CrossRef] [PubMed]
- Ager, A.L.; Roy, J.S.; Gamache, F.; Hébert, L.J. The Effectiveness of an Upper Extremity Neuromuscular Training Program on the Shoulder Function of Military Members With a Rotator Cuff Tendinopathy: A Pilot Randomized Controlled Trial. Mil. Med. 2019, 184, e385–e393. [Google Scholar] [CrossRef]
- Gepner, Y.; Hoffman, J.R.; Hoffman, M.W.; Zelicha, H.; Cohen, H.; Ostfeld, I. Association between circulating inflammatory markers and marksmanship following intense military training. J. R. Army Med. Corps. 2019, 165, 391–394. [Google Scholar] [CrossRef]
- Martin, K.; Périard, J.; Rattray, B.; Pyne, D.B. Physiological Factors Which Influence Cognitive Performance in Military Personnel. Hum. Factors. 2020, 62, 93–123. [Google Scholar] [CrossRef]
- Heilbronn, B.E.; Doma, K.; Gormann, D.; Schumann, M.; Sinclair, W.H. Effects of periodized vs. nonperiodized resistance training on army-specific fitness and skills performance. J. Strength Cond. Res. 2020, 34, 738–753. [Google Scholar] [CrossRef] [PubMed]
- Tornero-Aguilera, J.G.; Clemente-Suárez, V.J. Resisted and Endurance High Intensity Interval Training for Combat Preparedness. Aerosp. Med. Hum. Perform. 2019, 90, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Vaara, J.P.; Groeller, H.; Drain, J.; Kyröläinen, H.; Pihlainen, K.; Ojanen, T.; Connaboy, C.; Santtila, M.; Agostinelli, P.; Nindl, B.C. Physical training considerations for optimizing performance in essential military tasks. Eur. J. Sport Sci. 2022, 22, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.; Lee, H.; Barr, T.; Baxter, T.; Heinzelmann, M.; Rak, H.; Mysliwiec, V. Lower health related quality of life in U.S. military personnel is associated with service-related disorders and inflammation. Psychiatry Res. 2014, 216, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Good, C.H.; Brager, A.J.; Capaldi, V.F.; Mysliwiec, V. Sleep in the United States Military. Int. J. Neuropsychopharmacol. 2020, 45, 176–191. [Google Scholar] [CrossRef] [PubMed]
- Talbot, L.A.; Brede, E.; Price, M.N.; Zuber, P.D.; Metter, E.J. Self-Managed Strength Training for Active Duty Military With a Knee Injury: A Randomized Controlled Pilot Trial. Mil. Med. 2019, 184, e174–e183. [Google Scholar] [CrossRef] [PubMed]
- Molloy, J.M.; Pendergrass, T.L.; Lee, I.E.; Hauret, K.G.; Chervak, M.C.; Rhon, D.I. Musculoskeletal Injuries and United States Army Readiness. Part II: Management Challenges and Risk Mitigation Initiatives. Mil. Med. 2020, 185, e1472–e1480. [Google Scholar] [CrossRef] [PubMed]
- Tomes, C.D.; Sawyer, S.; Orr, R.; Schram, B. Ability of fitness testing to predict injury risk during initial tactical training: A systematic review and meta-analysis. Inj. Prev. 2020, 26, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, A.; Różański, P.; Jówko, E. Changes in Coordination Motor Abilities of Naval Academy Cadets During Military Survival Training. Aerosp. Med. Hum. Perform. 2019, 90, 632–636. [Google Scholar] [CrossRef]
- Foulis, S.A.; Hughes, J.M.; Walker, L.A.; Guerriere, K.I.; Taylor, K.M.; Proctor, S.P.; Friedl, K.E. Body mass does not reflect the body composition changes in response to similar physical training in young women and men. Int. J. Obes. 2021, 45, 659–665. [Google Scholar] [CrossRef]
- Aandstad, A. Association Between Performance in Muscle Fitness Field Tests and Skeletal Muscle Mass in Soldiers. Mil. Med. 2020, 185, e839–e846. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, E.; Alyazedi, F.M. The Impact of a 10-Week Military Training Course on Saudi Medical Recruits’ Fitness and Physical Activity Levels. Cureus 2023, 15, e46593. [Google Scholar] [CrossRef] [PubMed]
- Haddock, C.K.; Poston, W.S.; Heinrich, K.M.; Jahnke, S.A.; Jitnarin, N. The Benefits of High-Intensity Functional Training Fitness Programs for Military Personnel. Mil. Med. 2016, 181, e1508–e1514. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, F.G.; Deuster, P.A.; Barrett, J.; Kane, S.F.; Depenbrock, P. Letter: Is High-Intensity Functional Training (HIFT)/CrossFit Safe for Military Fitness Training? Mil. Med. 2017, 182, 1474–1475. [Google Scholar] [CrossRef] [PubMed]
- Canino, M.C.; Foulis, S.A.; Zambraski, E.J.; Cohen, B.S.; Redmond, J.E.; Hauret, K.G.; Frykman, P.N.; Sharp, M.A. U.S. Army Physical Demands Study: Differences in Physical Fitness and Occupational Task Performance Between Trainees and Active Duty Soldiers. J. Strength Cond. Res. 2019, 33, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Aandstad, A.; Sandberg, F.; Hageberg, R.; Kolle, E. Change in Anthropometrics and Physical Fitness in Norwegian Cadets During 3 Years of Military Academy Education. Mil. Med. 2020, 185, e1112–e1119. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.F.; Keenan, K.A.; Sell, T.C.; Abt, J.P.; Nagai, T.; Deluzio, J.; McGrail, M.; Lephart, S.M. Musculoskeletal, biomechanical, and physiological gender differences in the US military. US Army Med. Dep. J. 2015, 22–32. [Google Scholar] [PubMed]
- Yanovich, R.; Evans, R.; Israeli, E.; Constantini, N.; Sharvit, N.; Merkel, D.; Epstein, Y.; Moran, D.S. Differences in physical fitness of male and female recruits in gender-integrated army basic training. Med. Sci. Sports Exerc. 2008, 40, S654–S659. [Google Scholar] [CrossRef] [PubMed]
- Vanderburgh PM: Occupational relevance and body mass bias in military physical fitness tests. Med. Sci. Sports Exerc. 2008, 40, 1538–1545. [CrossRef]
- Helén, J.; Kyröläinen, H.; Ojanen, T.; Pihlainen, K.; Santtila, M.; Heikkinen, R.; Vaara, J.P. High-Intensity Functional Training Induces Superior Training Adaptations Compared With Traditional Military Physical Training. J. Strength Cond. Res. 2023, 37, 2477–2483. [Google Scholar] [CrossRef]
- Marques, D.L.; Travassos, B.; Sousa, A.C.; Gil, M.H.; Ribeiro, J.N.; Marques, M.C. Effects of Low-Moderate Load High-Velocity Resistance Training on Physical Performance of Under-20 Futsal Players. Sports 2019, 7, 69. [Google Scholar] [CrossRef]
- Vasold, K.L.; Parks, A.C.; Phelan, D.M.L.; Pontifex, M.B.; Pivarnik, J.M. Reliability and Validity of Commercially Available Low-Cost Bioelectrical Impedance Analysis. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Santtila, M.; Pihlainen, K.; Vaara, J.; Tokola, K.; Kyröläinen, H. Changes in physical fitness and anthropometrics differ between female and male recruits during the Finnish military service. BMJ Mil. Health 2022, 168, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Lewis, C.; Bell, D.; Bramblet, G.; Daffron, J.; Lambert, S.; Pecson, A.; Imamura, R.; Paulos, L.; Andrews, J.R. Core muscle activation during Swiss ball and traditional abdominal exercises. J. Orthop. Sports Phys. Ther. 2010, 40, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.Y.; Shin, D. The effects of curl-up exercise in terms of posture and muscle contraction direction on muscle activity and thickness of trunk muscles. J. Back. Musculoskelet. Rehabil. 2020, 33, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Thron, M.; Düking, P.; Ruf, L.; Härtel, S.; Woll, A.; Altmann, S. Assessing anaerobic speed reserve: A systematic review on the validity and reliability of methods to determine maximal aerobic speed and maximal sprinting speed in running-based sports. PLoS ONE 2024, 19, e0296866. [Google Scholar] [CrossRef] [PubMed]
- Paradisis, G.P.; Zacharogiannis, E.; Mandila, D.; Smirtiotou, A.; Argeitaki, P.; Cooke, C.B. Multi-Stage 20-m Shuttle Run Fitness Test, Maximal Oxygen Uptake and Velocity at Maximal Oxygen Uptake. J. Hum. Kinet. 2014, 41, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Flouris, A.D.; Metsios, G.S.; Koutedakis, Y. Enhancing the efficacy of the 20 m multistage shuttle run test. Br. J. Sports Med. 2005, 39, 166–170. [Google Scholar] [CrossRef]
- Kilpatrick, M.W.; Jung, M.E.; Little, J.P. High-intensity interval training: A review of physiological and psychological responses. ACSMs Health Fit. J. 2014, 18, 11–16. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; Pinto, M.D.; Nosaka, K.; Steele, J. Maximal Number of Repetitions at Percentages of the One Repetition Maximum: A Meta-Regression and Moderator Analysis of Sex, Age, Training Status, and Exercise. Sports Med. 2024, 54, 303–321. [Google Scholar] [CrossRef]
- Gil, M.H.; Neiva, H.N.; Sousa, A.; Marques, M.C.; Marinho, D.A. Current Approaches on Warming up for Sports Performance: A Critical Review. Strength Cond. J. 2019, 41, 70–79. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Liberman, K.; Forti, L.N.; Beyer, I.; Bautmans, I. The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: A systematic review. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 30–53. [Google Scholar] [CrossRef] [PubMed]
- Mikkola, I.; Jokelainen, J.J.; Timonen, M.J.; Härkönen, P.K.; Saastamoinen, E.; Laakso, M.A.; Peitso, A.J.; Juuti, A.K.; Keinänen-Kiukaanniemi, S.M.; Mäkinen, T.M. Physical activity and body composition changes during military service. Med. Sci. Sports Exerc. 2009, 41, 1735–1742. [Google Scholar] [CrossRef] [PubMed]
- Malavolti, M.; Battistini, N.C.; Dugoni, M.; Bagni, B.; Bagni, I.; Pietrobelli, A. Effect of intense military training on body composition. J. Strength Cond. Res. 2008, 22, 503–508. [Google Scholar] [CrossRef]
- Dyrstad, S.M.; Soltvedt, R.; Hallén, J. Physical fitness and physical training during Norwegian military service. Mil. Med. 2006, 171, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Santtila, M.; Pihlainen, K.; Viskari, J.; Kyröläinen, H. Optimal physical training during military basic training period. J. Strength Cond. Res. 2015, 29, S154–S157. [Google Scholar] [CrossRef]
- Ohkawara, K.; Tanaka, S.; Miyachi, M.; Ishikawa-Takata, K.; Tabata, I. A dose–response relation between aerobic exercise and visceral fat reduction: Systematic review of clinical trials. Int. J. Obes. 2007, 31, 1786–1797. [Google Scholar] [CrossRef]
- Slentz, C.A.; Duscha, M.S.; Johnson, J.L.; Ketchum, K.; Aiken, L.B.; Samsa, G.P.; Houmard, J.A.; Bales, C.W.; Kraus, W.E. Effects of the amount of exercise on body weight, body composition, and measures of central obesity: STRRIDE—A randomized controlled study. Arch. Intern. Med. 2004, 164, 31–39. [Google Scholar]
- Young, C.; Conard, P.L.; Armstrong, M.L.; Lacy, D. Older Military Veteran Care: Many Still Believe They Are Forgotten. Holist. Nurs. Pract. 2018, 36, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Campos, L.C.B.; Campos, F.A.D.; Bezerra, T.A.R.; Pellegrinotti, Í.L. Effects of 12 Weeks of Physical Training on Body Composition and Physical Fitness in Military Recruits. Int. J. Exerc. 2017, 10, 560–567. [Google Scholar]
- Lemes, B.; Vieira, S.S.; Silva, J.A.; Costa, W.O.; Bocalini, D.S.; Serra, A.J. Military physical training modifies anthropometric and functional parameters. Con. Sci. Saúde 2014, 13, 31. [Google Scholar] [CrossRef]
- Sousa, A.C.; Neiva, H.P.; Izquierdo, M.; Alves, A.R.; Duarte-Mendes, P.; Ramalho, A.G.; Marques, M.C.; Marinho, D.A. Concurrent Training Intensities: A Practical Approach for Program Design. J. Strength Cond. Res. 2020, 42, 38–44. [Google Scholar] [CrossRef]
- Spiering, B.A.; Walker, L.A.; Larcom, K.; Frykman, P.N.; Allison, S.C.; Sharp, M.A. Predicting Soldier Task Performance From Physical Fitness Tests: Reliability and Construct Validity of a Soldier Task Test Battery. J. Strength Cond. Res. 2021, 35, 2749–2755. [Google Scholar] [CrossRef]
Pre-Training | Post-Training | Δ (95% CI) | p-Value | ES | |
---|---|---|---|---|---|
Body mass (m) | 69.79 ± 11.01 | 67.56 ± 10.35 | 2.23 (0.35) | <0.01 * | 1.48 [large] |
Body mass index (kg/m2) | 25.02 ± 4.04 | 24.21 ± 3.80 | 0.81 (0.12) | <0.01 * | 1.48 [large] |
Fat mass (%) | 26.86 ± 4.13 | 25.71 ± 3.78 | 1.16 (0.23) | <0.01 * | 1.14 [moderate] |
VO2max (mL/kg/min) | 36.09 ± 6.90 | 36.99 ± 6.67 | 0.90 (0.43) | <0.01 * | 0.48 [small] |
Sprint (m/s) | 5.88 ± 0.89 | 6.33 ± 0.83 | 0.45 (0.10) | <0.01 * | 1.08 [moderate] |
CMJ (cm) | 30.92 ± 8.87 | 34.86 ± 9.60 | 3.94 (0.39) | <0.01 * | 2.33 [large] |
Medicine ball throw (m) | 4.38 ± 0.92 | 4.80 ± 0.99 | 0.42 (0.07) | <0.01 * | 1.31 [large] |
Push-ups (n) | 30.51 ± 11.56 | 33.57 ± 12.21 | 3.05 (0.59) | <0.01 * | 1.21 [large] |
Curl-ups (n) | 66.88 ± 18.99 | 71.92 ± 18.82 | 5.04 (1.30) | <0.01 * | 0.90 [moderate] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coge, M.; Neiva, H.P.; Pereira, A.; Faíl, L.; Ribeiro, B.; Esteves, D. Effects of 34 Weeks of Military Service on Body Composition and Physical Fitness in Military Cadets of Angola. J. Funct. Morphol. Kinesiol. 2024, 9, 111. https://doi.org/10.3390/jfmk9030111
Coge M, Neiva HP, Pereira A, Faíl L, Ribeiro B, Esteves D. Effects of 34 Weeks of Military Service on Body Composition and Physical Fitness in Military Cadets of Angola. Journal of Functional Morphology and Kinesiology. 2024; 9(3):111. https://doi.org/10.3390/jfmk9030111
Chicago/Turabian StyleCoge, Manuel, Henrique Pereira Neiva, Ana Pereira, Luís Faíl, Bruno Ribeiro, and Dulce Esteves. 2024. "Effects of 34 Weeks of Military Service on Body Composition and Physical Fitness in Military Cadets of Angola" Journal of Functional Morphology and Kinesiology 9, no. 3: 111. https://doi.org/10.3390/jfmk9030111
APA StyleCoge, M., Neiva, H. P., Pereira, A., Faíl, L., Ribeiro, B., & Esteves, D. (2024). Effects of 34 Weeks of Military Service on Body Composition and Physical Fitness in Military Cadets of Angola. Journal of Functional Morphology and Kinesiology, 9(3), 111. https://doi.org/10.3390/jfmk9030111