Oxygen Uptake and Bilaterally Measured Vastus Lateralis Muscle Oxygen Desaturation Kinetics in Well-Trained Endurance Cyclists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Study Participants
2.3. Procedures
2.3.1. Determination of the Gas Exchange Threshold, Ventilatory Threshold, V̇O2max, and Peak Power Using Incremental Cycling Test
2.3.2. CWR Test
2.4. Data Analysis
2.4.1. Signal Processing
2.4.2. Modelling of Oxygen Consumption and Muscle O2 Desaturation Kinetics
2.4.3. Statistical Analysis
3. Results
3.1. Comparison of Oxygen Consumption and Oxygen Desaturation Kinetics
3.2. Associations between Oxygen Consumption and Oxygen Desaturation Kinetics
4. Discussion
4.1. Fast Component
4.2. Slow Component
4.3. The General Response to the Exercise and Bilateral Differences in Oxygen Desaturation
4.4. Practical Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Grassi, B.; Christensen, P.M.; Krustrup, P.; Bangsbo, J.; Poole, D.C. Slow component of VO2 kinetics: Mechanistic bases and practical applications. Med. Sci. Sports Exerc. 2011, 43, 2046–2062. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Koppo, K. Effect of training on VO2 kinetics and performance. In Oxygen Uptake Kinetics in Sport, Exercise and Medicine; Routledge: Oxford, UK, 2005; pp. 373–398. [Google Scholar]
- Buekers, J.; Theunis, J.; Peña Fernández, A.; Wouters, E.F.M.; Spruit, M.A.; De Boever, P.; Aerts, J.-M. Box-Jenkins Transfer Function Modelling for Reliable Determination of VO2 Kinetics in Patients with COPD. Appl. Sci. 2019, 9, 1822. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Oxygen uptake kinetics. Compr. Physiol. 2012, 2, 933–996. [Google Scholar] [CrossRef]
- Burnley, M.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Zoladz, J.A.; Gladden, L.B.; Hogan, M.C.; Nieckarz, Z.; Grassi, B. Progressive recruitment of muscle fibers is not necessary for the slow component of VO2 kinetics. J. Appl. Physiol. 2008, 105, 575–580. [Google Scholar] [CrossRef]
- Qi, L.; Guan, S.; Zhou, D.-D.; Gao, F.-S.; Liu, L.-Q. The influence of muscle fiber type on slow component of oxygen uptake kinetics. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 471–478. [Google Scholar] [CrossRef]
- Demarle, A.P.; Slawinski, J.J.; Laffite, L.P.; Bocquet, V.G.; Koralsztein, J.P.; Billat, V.L. Decrease of O2 deficit is a potential factor in increased time to exhaustion after specific endurance training. J. Appl. Physiol. 2001, 90, 947–953. [Google Scholar] [CrossRef]
- Whipp, B. The kinetics of oxygen uptake: Physiological inferences from the parameters. In Oxygen Uptake Kinetics in Sport, Exercise, and Medicine; Routledge: Oxford, UK, 2005. [Google Scholar]
- Ozkaya, O.; Balci, G.A.; As, H.; Cabuk, R.; Norouzi, M. Grey zone: A gap between heavy and severe exercise domain. J. Strength Cond. Res. 2022, 36, 113–120. [Google Scholar] [CrossRef]
- Cannon, D.T.; White, A.C.; Andriano, M.F.; Kolkhorst, F.W.; Rossiter, H.B. Skeletal muscle fatigue precedes the slow component of oxygen uptake kinetics during exercise in humans. J. Physiol. 2011, 589, 727–739. [Google Scholar] [CrossRef]
- Cleuziou, C.; Perrey, S.; Borrani, F.; Lecoq, A.M.; Courteix, D.; Germain, P.; Obert, P. (.)VO(2) and EMG activity kinetics during moderate and severe constant work rate exercise in trained cyclists. Can. J. Appl. Physiol. 2004, 29, 758–772. [Google Scholar] [CrossRef] [PubMed]
- Allen, H. Using a Power Meter. In Cycling Science; Cheung, S.S., Zabala, M., Eds.; Human Kinetics: Champaign, IL, USA, 2017; pp. 362–370. [Google Scholar]
- Grassi, B.; Quaresima, V. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: A review from an exercise physiology perspective. J. Biomed. Opt. 2016, 21, 091313. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Tabusadani, M.; Sekikawa, K.; Hayashi, Y.; Onari, K. Do the kinetics of peripheral muscle oxygenation reflect systemic oxygen intake? Eur. J. Appl. Physiol. 2001, 84, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S.; Ferrari, M. Muscle Oximetry in Sports Science: A Systematic Review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef] [PubMed]
- Bringard, A.; Perrey, S. Influence of repeated isometric contractions on muscle deoxygenation and pulmonary oxygen uptake kinetics in humans. Clin. Physiol. Funct. Imaging 2004, 24, 229–236. [Google Scholar] [CrossRef]
- DeLorey, D.S.; Kowalchuk, J.M.; Paterson, D.H. Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J. Appl. Physiol. 2003, 95, 113–120. [Google Scholar] [CrossRef]
- Murias, J.M.; Spencer, M.D.; Kowalchuk, J.M.; Paterson, D.H. Muscle deoxygenation to VO(2) relationship differs in young subjects with varying tauVO(2). Eur. J. Appl. Physiol. 2011, 111, 3107–3118. [Google Scholar] [CrossRef]
- Grassi, B.; Rossiter, H.B.; Zoladz, J.A. Skeletal muscle fatigue and decreased efficiency: Two sides of the same coin? Exerc. Sport Sci. Rev. 2015, 43, 75–83. [Google Scholar] [CrossRef]
- Grassi, B.; Pogliaghi, S.; Rampichini, S.; Quaresima, V.; Ferrari, M.; Marconi, C.; Cerretelli, P. Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J. Appl. Physiol. 2003, 95, 149–158. [Google Scholar] [CrossRef]
- Davis, P.R.; Yakel, J.P.; Anderson, D.J. Muscle oxygen demands of the vastus lateralis in back and front squats. Int. J. Exerc. Sci. 2020, 13, 734. [Google Scholar]
- Feldmann, A.; Schmitz, R.; Erlacher, D. Near-infrared spectroscopy-derived muscle oxygen saturation on a 0% to 100% scale: Reliability and validity of the Moxy Monitor. J. Biomed. Opt. 2019, 24, 115001. [Google Scholar] [CrossRef] [PubMed]
- Crum, E.M.; O’Connor, W.J.; Van Loo, L.; Valckx, M.; Stannard, S.R. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur. J. Sport Sci. 2017, 17, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Koga, S.; Poole, D.C.; Ferreira, L.F.; Whipp, B.J.; Kondo, N.; Saitoh, T.; Ohmae, E.; Barstow, T.J. Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise. J. Appl. Physiol. 2007, 103, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, T.; Ferreira, L.F.; Barstow, T.J.; Poole, D.C.; Ooue, A.; Kondo, N.; Koga, S. Effects of prior heavy exercise on heterogeneity of muscle deoxygenation kinetics during subsequent heavy exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R615–R621. [Google Scholar] [CrossRef]
- Carpes, F.P.; Mota, C.B.; Faria, I.E. On the bilateral asymmetry during running and cycling–A review considering leg preference. Phys. Ther. Sport 2010, 11, 136–142. [Google Scholar] [CrossRef]
- Smak, W.; Neptune, R.; Hull, M. The influence of pedaling rate on bilateral asymmetry in cycling. J. Biomech. 1999, 32, 899–906. [Google Scholar] [CrossRef]
- De Pauw, K.; Roelands, B.; Cheung, S.S.; de Geus, B.; Rietjens, G.; Meeusen, R. Guidelines to classify subject groups in sport-science research. Int. J. Sports Physiol. Perform. 2013, 8, 111–122. [Google Scholar] [CrossRef]
- Rodger, S.M.; Plews, D.J.; McQuillan, J.; Driller, M.W. Evaluation of the Cyclus cycle ergometer and the Stages power meter for measurement of power output in cycling. J. Sci. Cycl. 2016, 5, 16–22. [Google Scholar]
- Wasserman, K.; Hansen, J.E.; Sue, D.Y.; Stringer, W.W.; Whipp, B.J. Principles of exercise testing and interpretation: Including pathophysiology and clinical applications. Med. Sci. Sport. Exerc. 2005, 37, 1249. [Google Scholar]
- Kuipers, H.; Verstappen, F.; Keizer, H.A.; Geurten, P.; Van Kranenburg, G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int. J. Sport. Med. 1985, 6, 197–201. [Google Scholar] [CrossRef]
- Montalvo-Perez, A.; Alejo, L.B.; Valenzuela, P.L.; Castellanos, M.; Gil-Cabrera, J.; Talavera, E.; Lucia, A.; Barranco-Gil, D. Validity of the Favero Assioma Duo Power Pedal System for Measuring Power Output and Cadence. Sensors 2021, 21, 2277. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Koppo, K.; Jones, A.M. ‘Priming exercise’ and VO2 kinetics. In Oxygen Uptake Kinetics in Sport, Exercise and Medicine; Routledge: Oxford, UK, 2005; pp. 230–260. [Google Scholar]
- Kowalchuk, J.M.; Rossiter, H.B.; Ward, S.A.; Whipp, B.J. The effect of resistive breathing on leg muscle oxygenation using near-infrared spectroscopy during exercise in men. Exp. Physiol. 2002, 87, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Zacca, R.; Azevedo, R.; Figueiredo, P.; Vilas-Boas, J.P.; Castro, F.A.d.S.; Pyne, D.B.; Fernandes, R.J. VO2FITTING: A free and open-source software for modelling oxygen uptake kinetics in swimming and other exercise modalities. Sports 2019, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, A.; Ammann, L.; Gachter, F.; Zibung, M.; Erlacher, D. Muscle Oxygen Saturation Breakpoints Reflect Ventilatory Thresholds in Both Cycling and Running. J. Hum. Kinet. 2022, 83, 87–97. [Google Scholar] [CrossRef]
- Bearden, S.; Moffatt, R. V̇ o 2 and heart rate kinetics in cycling: Transitions from an elevated baseline. J. Appl. Physiol. 2001, 90, 2081–2087. [Google Scholar] [CrossRef]
- Ferreira, L.F.; Townsend, D.K.; Lutjemeier, B.J.; Barstow, T.J. Muscle capillary blood flow kinetics estimated from pulmonary O2 uptake and near-infrared spectroscopy. J. Appl. Physiol. 2005, 98, 1820–1828. [Google Scholar] [CrossRef]
- Carter, H.; Jones, A.M.; Barstow, T.J.; Burnley, M.; Williams, C.A.; Doust, J.H. Oxygen uptake kinetics in treadmill running and cycle ergometry: A comparison. J. Appl. Physiol. 2000, 89, 899–907. [Google Scholar] [CrossRef]
- Burnley, M.; Jones, A.M.; Carter, H.; Doust, J.H. Effects of prior heavy exercise on phase II pulmonary oxygen uptake kinetics during heavy exercise. J. Appl. Physiol. 2000, 89, 1387–1396. [Google Scholar] [CrossRef]
- McKay, B.R.; Paterson, D.H.; Kowalchuk, J.M. Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J. Appl. Physiol. 2009, 107, 128–138. [Google Scholar] [CrossRef]
- Jones, A.M.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sport. Med. 2000, 29, 373–386. [Google Scholar] [CrossRef]
- Dumanoir, G.R.; DeLorey, D.S.; Kowalchuk, J.M.; Paterson, D.H. Kinetics of VO2 limb blood flow and regional muscle deoxygenation in young adults during moderate intensity, knee-extension exercise. Eur. J. Appl. Physiol. 2010, 108, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Comerota, A.J.; Throm, R.C.; Kelly, P.; Jaff, M. Tissue (muscle) oxygen saturation (StO2): A new measure of symptomatic lower-extremity arterial disease. J. Vasc. Surg. 2003, 38, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Lucía, A.; Hoyos, J.; Chicharro, J.L. The slow component of VO2 in professional cyclists. Br. J. Sport. Med. 2000, 34, 367–374. [Google Scholar] [CrossRef]
- Sarabon, N.; Markovic, G.; Mikulic, P.; Latash, M.L. Bilateral synergies in foot force production tasks. Exp. Brain Res. 2013, 227, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S. Muscle oxygenation unlocks the secrets of physiological responses to exercise: Time to exploit it in the training monitoring. Front. Sport. Act. Living 2022, 4, 864825. [Google Scholar] [CrossRef] [PubMed]
Subject | Age (y) | Height (m) | Weight (kg) | Half of Skin-Fold (mm) | Yearly Training Hours | Yearly Cycling Distance (km) | PPW (W/kg) | VO2max (mL/min/kg) | Duration of Normalisation Trial (s) | Comments | |
---|---|---|---|---|---|---|---|---|---|---|---|
Incremental Test | Normalisation Trial at PPW | ||||||||||
A | 42 | 1.759 | 85.75 | 9 | 830 | 14,200 | 3.97 | 57.4 | 59.1 | 361 | |
B | 20 | 1.895 | 82.45 | 5 | 466 | 10,200 | 4.85 | 66.7 | 68.5 | 240 | |
C | 45 | 1.777 | 78.85 | 8.5 | 530 | 6500 | 3.93 | 50.6 | 52.1 | 121 | |
D | 46 | 1.841 | 83.3 | 7.5 | 525 | 9400 | 4.08 | 54.2 | 55.5 | 299 | |
E | 52 | 1.814 | 75.2 | 6 | 425 | 6200 | 3.72 | 58.7 | 59.0 | 340 | L; R; A |
F | 44 | 1.77 | 72.4 | 4.5 | 510 | 7500 | 5.11 | 64.0 | 63.1 | 306 | |
G | 43 | 1.798 | 81.2 | 5 | 560 | 10,900 | 4.99 | 71.0 | 73.0 | 387 | |
H | 45 | 1.829 | 88.4 | 6 | 445 | 8300 | 4.64 | 62.2 | 61.6 | 330 | |
I | 48 | 1.841 | 91.2 | 8.5 | 480 | 9900 | 4.00 | 64.0 | 64.0 | 355 | |
J | 37 | 1.845 | 79.45 | 7 | 670 | 13,400 | 4.41 | 62.7 | 64.6 | 363 | |
K | 46 | 1.96 | 91.6 | 4 | 1000 | 14,900 | 4.53 | 64.5 | 65.1 | 365 | R |
L | 44 | 1.849 | 85.25 | 6.5 | 590 | 10,800 | 4.22 | 59.4 | 59.0 | 296 | L |
M | 46 | 1.847 | 81.7 | 6 | 415 | 9400 | 4.65 | 70.7 | 72.8 | 295 | |
N | 41 | 1.913 | 79.95 | 3 | 560 | 14,400 | 5.13 | 74.6 | 75.8 | 373 | |
O | 37 | 1.839 | 79.6 | 7.5 | 415 | 10,400 | 4.84 | 66.3 | 67.7 | 335 | |
P | 33 | 1.876 | 92.1 | 9 | 520 | 10,700 | 4.40 | 60.0 | 61.2 | 388 | |
Q | 44 | 1.849 | 78.2 | 5 | 640 | 9000 | 4.73 | 71.8 | 70.1 | 292 | |
R | 50 | 1.76 | 76.5 | 7.5 | 415 | 6000 | 3.86 | 54.4 | 56.0 | 300 | |
Mean | 42.4 | 1.837 | 82.4 | 6.4 | 555 | 10,117 | 4.45 | 63.0 | 63.8 | 319.2 | |
SD | 7.2 | 0.053 | 5.7 | 1.8 | 154 | 2744 | 0.45 | 6.6 | 6.6 | 63.4 |
Intensity | P (W) | Pkg (W/kg) | PLeftPedal (W) | PRigthPedal (W) |
---|---|---|---|---|
BL/Recovery | 146.1 ± 9.2 | 1.78 ± 0.13 | ||
Priming at GET | 237.5 ± 32.1 | 2.89 ± 0.39 | ||
CWR at VT | 301.9 ± 34.6 | 3.67 ± 0.38 | 147.5 ± 19.7 | 151.2 ± 22.3 |
∆P of CWR | 155.8 ± 27.5 | 1.89 ± 0.30 | ||
Normalisation at PPW | 366.1 ± 40.8 | 4.45 ± 0.45 |
V̇O2 | leftDeSmO2 | rightDeSmO2 | avrDeSmO2 | |
---|---|---|---|---|
ABL (mL/kg/min or %) # | 30.1±2.7 | 27.8± 10.5 | 23.2 ± 11.1 | 25.5 ± 9.6 |
Ap (mL/kg/min or %) # | 20.5 ± 3.8 | 53.7 ± 11.1 | 53.5 ± 11.7 | 53.9 ± 9.4 |
τp (s) | 26.5 ± 4.2 | 14.2 ± 4.2 * | 12.6 ± 3.9 * | 13.7 ± 3.4 * |
TDp (s) | 9.5 ± 3.7 | 6.1 ± 2.4 * | 6.4 ± 2.3 * | 6.1 ± 2.0 * |
MRT (s) | 36.0 ± 5.4 | 20.3 ± 4.6 * | 19.0 ± 3.2 * | 19.8 ± 3.4 * |
TDsc (s) ¤ | 140.3 ± 56.0 | 137.7 ± 79.7 | 138.8 ± 72.2 | 122.8 ± 59.6 *,R |
Asc (mL/kg/min or %) ¤ # | 4.1 ± 1.1 | 9.5 ± 6.1 | 10.7 ± 5.7 | 9.3 ± 4.7 |
EndFit (mL/kg/min or %) # | 54.6 ± 5.9 | 89.9 ± 7.2 | 86.2 ± 9.5 | 88.1 ± 6.5 |
Aend(mL/kg/min or %) # | 24.6 ± 4.1 | 62.1 ± 10.3 | 63.1 ± 10.8 | 62.6 ± 9.0 |
SEregr (mL/kg/min or %) # | 1.62 ± 0.50 | 1.42 ± 0.70 | 1.75 ± 0.63 L | 1.24 ± 0.46 L,R |
nAp (%) | 83.3 ± 4.2 | 85.5 ± 10.2 | 83.6 ± 10.2 | 85.0 ± 7.7 |
nAsc_end (%) ¤ | 17.0 ± 4.0 | 15.1 ± 9.8 | 16.9 ± 8.7 | 14.7 ± 7.2 |
nSEregr (%) | 6.72 ± 1.97 | 2.32 ± 1.15 * | 2.85 ± 1.22 * | 2.00 ± 0.75 *L,R |
V̇O2 and | V̇O2 and | V̇O2 and | leftDeSmO2 and | |
---|---|---|---|---|
leftDeSmO2 | rightDeSmO2 | avrDeSmO2 | rightDeSmO2 | |
ABL (mL/kg/min or %) | −0.224 | −0.121 | −0.331 | 0.559 * |
Ap (mL/kg/min or %) ¤ | 0.637 ** | 0.806 ** | 0.746 ** | 0.754 ** |
τp (s) | −0.134 | 0.413 | 0.036 | 0.251 |
TDp (s) | −0.073 | 0.192 | 0.189 | 0.467 |
MRT (s) | −0.226 | −0.233 | −0.355 | 0.180 |
τp of V̇O2 (s) and MRT of DeSmO2 | −0.290 | −0.067 | −0.387 | |
TDsc (s) ¤ | 0.263 | 0.828 ** | 0.865 ** | 0.200 |
Asc (mL/min/kg or %) ¤ | 0.044 | 0.262 | 0.330 | 0.350 |
EndFit (mL/min/kg or %) | −0.043 | 0.294 | 0.208 | 0.211 |
Aend (mL/min/kg or %) | 0.584 * | 0.561 * | 0.678 ** | 0.458 |
nAp (% of Aend) ¤ | 0.330 | 0.481 | 0.493 * | 0.473 |
nAsc (% of Aend) ¤ | 0.163 | 0.375 | 0.358 | 0.416 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinpõld, K.; Rannama, I. Oxygen Uptake and Bilaterally Measured Vastus Lateralis Muscle Oxygen Desaturation Kinetics in Well-Trained Endurance Cyclists. J. Funct. Morphol. Kinesiol. 2023, 8, 64. https://doi.org/10.3390/jfmk8020064
Reinpõld K, Rannama I. Oxygen Uptake and Bilaterally Measured Vastus Lateralis Muscle Oxygen Desaturation Kinetics in Well-Trained Endurance Cyclists. Journal of Functional Morphology and Kinesiology. 2023; 8(2):64. https://doi.org/10.3390/jfmk8020064
Chicago/Turabian StyleReinpõld, Karmen, and Indrek Rannama. 2023. "Oxygen Uptake and Bilaterally Measured Vastus Lateralis Muscle Oxygen Desaturation Kinetics in Well-Trained Endurance Cyclists" Journal of Functional Morphology and Kinesiology 8, no. 2: 64. https://doi.org/10.3390/jfmk8020064
APA StyleReinpõld, K., & Rannama, I. (2023). Oxygen Uptake and Bilaterally Measured Vastus Lateralis Muscle Oxygen Desaturation Kinetics in Well-Trained Endurance Cyclists. Journal of Functional Morphology and Kinesiology, 8(2), 64. https://doi.org/10.3390/jfmk8020064