Location In Vivo of the Innervation Zone in the Human Medial Gastrocnemius Using Imposed Contractions: A Comparison of the Usefulness of the M-Wave and H-Reflex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Volunteers
2.2. Instrumentation
2.3. Procedure
2.4. Signal Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masuda, T.; Miyano, H.; Sadoyama, T. The propagation of motor unit action potential and the location of neuromuscular junction investigated by surface electrode arrays. Electroencephalogr. Clin. Neurophysiol. 1983, 55, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Sadoyama, T. Skeletal muscles from which the propagation of motor unit action potentials is detectable with a surface electrode array. Electroencephalogr. Clin. Neurophysiol. 1987, 1, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Sadoyama, T. Topographical map of innervation zones within single motor units measured with a grid surface electrode. IEEE Trans. Biomed. Eng. 1988, 35, 623–628. [Google Scholar] [CrossRef]
- Masuda, T.; Sadoyama, T. Distribution of innervation zones in the human biceps brachii. J. Electromyogr. Kinesiol. 1991, 1, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Saitou, K.; Masuda, T.; Michikami, D.; Kojima, R.; Okada, M. Innervation zones of the upper and lower limb muscles estimated by using multichannel surface EMG. J. Hum. Ergol. 2000, 29, 35–52. [Google Scholar]
- Rainoldi, A.; Melchiorri, G.; Caruso, I. A method for positioning electrodes during surface EMG recordings in lower limb muscles. J. Neurosci. Methods 2004, 134, 37–43. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Ashford, S.; Turner-Stokes, L.; Allison, R.; Duke, L.; Bavikatte, G.; Kirker, S.; Moore, P.; Ward, A.B.; Bilton, D. Spasticity in adults: Management using botulinum toxin. Natl. Guidel. 2018, 1, 20–28. [Google Scholar]
- Piitulainen, H.; Rantalainen, T.; Linnamo, V.; Komi, P.; Avela, J. Innervation zone shift at different levels of isometric contraction in the biceps brachii muscle. J. Electromyogr. Kinesiol. 2009, 19, 667–675. [Google Scholar] [CrossRef]
- Guzman-Venegas, R.A.; Araneda, O.F.; Silvestre, R.A. Differences between motor point and innervation zone locations in the biceps brachii. An exploratory consideration for the treatment of spasticity with botulinum toxin. J. Electromyogr. Kinesiol. 2014, 24, 923–927. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Bhadane, M.; Zhou, P.; Rymer, W.Z. Activation deficit correlates with weakness in chronic stroke: Evidence from evoked and voluntary EMG recordings. Clin. Neurophysiol. 2014, 125, 2413–2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friesenbichler, B.; Lepers, R.; Maffiuletti, N.A. Soleus and lateral gastrocnemius H-reflexes during standing with unstable footwear. Muscle Nerve 2015, 51, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, R.M.; Ingersoll, C.D.; Hoffman, M.A. The Hoffmann Reflex: Methodologic Considerations and Applications for Use in Sports Medicine and Athletic Training Research. J. Athl. Train. 2004, 39, 268–277. [Google Scholar] [PubMed]
- Chen, Y.S.; Zhou, S.; Crowley-McHattan, Z.J.; Bezerra, P.; Tseng, W.C.; Chen, C.H.; Ye, X. Acute Effects of Kinesiology Taping Stretch Tensions on Soleus and Gastrocnemius H-Reflex Modulations. Int. J. Environ. Res. Public Health 2021, 18, 4411. [Google Scholar] [CrossRef] [PubMed]
- Wissel, J.; Schelosky, L.D.; Scott, J.; Christe, W.; Faiss, J.H.; Mueller, J. Early development of spasticity following stroke: A prospective, observational trial. J. Neurol. 2010, 257, 1067–1072. [Google Scholar] [CrossRef] [Green Version]
- Beretta Piccoli, M.; Rainoldi, A.; Heitz, C.; Wuthrich, M.; Boccia, G.; Tomasoni, E.; Spirolazzi, C.; Egloff, M.; Barbero, M. Innervation zone locations in 43 superficial muscles: Toward a standardization of electrode positioning. Muscle Nerve 2014, 49, 413–421. [Google Scholar] [CrossRef]
- Barbero, M.; Merletti, R.; Rainoldi, A. Atlas of Muscle Innervation Zones; Springer: Milan, Italy, 2012; p. 134. [Google Scholar]
- Rennie, S. Electrophysical Agents. Contraindications And Precautions: An Evidence-Based Approach to Clinical Decision Making In Physical Therapy. Physiother. Can. 2010, 62, 1–80. [Google Scholar] [CrossRef]
- Guzman-Venegas, R.A.; Bralic, M.P.; Cordero, J.J.; Cavada, G.; Araneda, O.F. Concordance of the location of the innervation zone of the tibialis anterior muscle using voluntary and imposed contractions by electrostimulation. J. Electromyogr. Kinesiol. 2016, 27, 18–23. [Google Scholar] [CrossRef]
- Zehr, E.P. Considerations for use of the Hoffmann reflex in exercise studies. Eur. J. Appl. Physiol. 2002, 86, 455–468. [Google Scholar] [CrossRef]
- Castroflorio, T.; Farina, D.; Bottin, A.; Debernardi, C.; Bracco, P.; Merletti, R.; Anastasi, G.; Bramanti, P. Non-invasive assessment of motor unit anatomy in jaw-elevator muscles. J. Oral Rehabil. 2005, 32, 708–713. [Google Scholar] [CrossRef]
- Merletti, R.; Farina, D.; Gazzoni, M. The linear electrode array: A useful tool with many applications. J. Electromyogr. Kinesiol. 2003, 13, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Ullah, K.; Cescon, C.; Afsharipour, B.; Merletti, R. Automatic detection of motor unit innervation zones of the external anal sphincter by multichannel surface EMG. J. Electromyogr. Kinesiol. 2014, 24, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, I.; Gila, L.; Malanda, A.; Gurtubay, I.G.; Mallor, F.; Gómez, S.; Navallas, J.; Rodríguez, J. Motor unit action potential duration, I: Variability of manual and automatic measurements. J. Clin. Neurophysiol. 2007, 24, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Tractenberg, R.E.; Yumoto, F.; Jin, S.; Morris, J.C. Sample size requirements for training to a kappa agreement criterion on clinical dementia ratings. Alzheimer Dis. Assoc. Disord. 2010, 24, 264–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zidan, M.; Thomas, R.L.; Slovis, T.L. What you need to know about statistics, part II: Reliability of diagnostic and screening tests. Pediatr. Radiol. 2015, 45, 317–328. [Google Scholar] [CrossRef]
- Martin, S.; MacIsaac, D. Innervation zone shift with changes in joint angle in the brachial biceps. J. Electromyogr. Kinesiol. 2006, 16, 144–148. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Y.; Li, S.; Zhou, P.; Munoz, A.; Tang, D.; Zhang, Y. Spatial characterization of innervation zones under electrically elicited M-wave. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016, 2016, 121–124. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Y.; Liu, Y.; Li, S.; Zhou, P.; Rymer, W.Z.; Zhang, Y. Imaging three-dimensional innervation zone distribution in muscles from M-wave recordings. J. Neural Eng. 2017, 14, 036011. [Google Scholar] [CrossRef]
- Schieppati, M. The Hoffmann reflex: A means of assessing spinal reflex excitability and its descending control in man. Prog. Neurobiol. 1987, 28, 345–376. [Google Scholar] [CrossRef]
- Pierrot-Deseilligny, E.; Mazevet, D. The monosynaptic reflex: A tool to investigate motor control in humans. Interest and limits. Neurophysiol. Clin. 2000, 30, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.S.; Lin, Y.C.; Ho, K.Y. Modulation of soleus H-reflex amplitude and variance during pretibial contraction—Effects of joint position and effort level. Int. J. Neurosci. 2002, 112, 623–638. [Google Scholar] [CrossRef] [PubMed]
- Garland, S.J.; Gerilovsky, L.; Enoka, R.M. Association between muscle architecture and quadriceps femoris H-reflex. Muscle Nerve 1994, 17, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Kitago, T.; Mazzocchio, R.; Liuzzi, G.; Cohen, L.G. Modulation of H-reflex excitability by tetanic stimulation. Clin. Neurophysiol. 2004, 115, 858–861. [Google Scholar] [CrossRef]
- Kameyama, O.; Hayes, K.C.; Wolfe, D. Methodological considerations contributing to variability of the quadriceps H-reflex. Am. J. Phys. Med. Rehabil. 1989, 68, 277–282. [Google Scholar] [CrossRef]
- Dowman, R.; Wolpaw, J.R. Jendrassik maneuver facilitates soleus H-reflex without change in average soleus motoneuron pool membrane potential. Exp. Neurol. 1988, 101, 288–302. [Google Scholar] [CrossRef]
- Hopkins, J.T.; Ingersoll, C.D.; Cordova, M.L.; Edwards, J.E. Intrasession and intersession reliability of the soleus H-reflex in supine and standing positions. Electromyogr. Clin. Neurophysiol. 2000, 40, 89–94. [Google Scholar]
- Hopkins, J.T.; Wagie, N.C. Intrasession and intersession reliability of the quadriceps Hoffmann reflex. Electromyogr. Clin. Neurophysiol. 2003, 43, 85–89. [Google Scholar]
- Merletti, R.; Holobar, A.; Farina, D. Analysis of motor units with high-density surface electromyography. J. Electromyogr. Kinesiol. 2008, 18, 879–890. [Google Scholar] [CrossRef]
Absolute Position | Adjusted Position | Anthropometry | ||||
---|---|---|---|---|---|---|
X (mm) | Y (mm) | X (%) | Y (%) | Knee Width (mm) | Leg Length (mm) | |
Median | 33.0 | 165.0 | 34.0 | 39.7 | 94.5 | 406.5 |
25% Percentile | 20.3 | 144.5 | 23.0 | 36.5 | 91.3 | 395.3 |
75% Percentile | 45.0 | 177.0 | 48.5 | 42.8 | 98.5 | 422.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán-Venegas, R.A.; Palma-Traro, F.H.; Valencia, O.D.; Hudson, M.J.; Pincheira, P.A. Location In Vivo of the Innervation Zone in the Human Medial Gastrocnemius Using Imposed Contractions: A Comparison of the Usefulness of the M-Wave and H-Reflex. J. Funct. Morphol. Kinesiol. 2022, 7, 107. https://doi.org/10.3390/jfmk7040107
Guzmán-Venegas RA, Palma-Traro FH, Valencia OD, Hudson MJ, Pincheira PA. Location In Vivo of the Innervation Zone in the Human Medial Gastrocnemius Using Imposed Contractions: A Comparison of the Usefulness of the M-Wave and H-Reflex. Journal of Functional Morphology and Kinesiology. 2022; 7(4):107. https://doi.org/10.3390/jfmk7040107
Chicago/Turabian StyleGuzmán-Venegas, Rodrigo A., Felipe H. Palma-Traro, Oscar D. Valencia, María José Hudson, and Patricio A. Pincheira. 2022. "Location In Vivo of the Innervation Zone in the Human Medial Gastrocnemius Using Imposed Contractions: A Comparison of the Usefulness of the M-Wave and H-Reflex" Journal of Functional Morphology and Kinesiology 7, no. 4: 107. https://doi.org/10.3390/jfmk7040107
APA StyleGuzmán-Venegas, R. A., Palma-Traro, F. H., Valencia, O. D., Hudson, M. J., & Pincheira, P. A. (2022). Location In Vivo of the Innervation Zone in the Human Medial Gastrocnemius Using Imposed Contractions: A Comparison of the Usefulness of the M-Wave and H-Reflex. Journal of Functional Morphology and Kinesiology, 7(4), 107. https://doi.org/10.3390/jfmk7040107