Kynurenine Metabolism as a Mechanism to Improve Fatigue and Physical Function in Postmenopausal Breast Cancer Survivors Following Resistance Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment and Screening
2.2. Research Testing
2.2.1. Anthropometric Measurements
2.2.2. Mobility and Functional Test
2.2.3. Strength and Endurance Tests
2.3. Self-Report Measures
2.4. Laboratory Analyses
- Cardiometabolic Health: Metabolic syndrome (MetS) was defined following the American Heart Association National Heart, Lung, and Blood Institute (AHA/NHLBI (ATP III)) guidelines for the Americans as the presence of at least 3 of the following components: (1) elevated waist circumference (≥88 cm for women in the United States), (2) elevated triglycerides (TGs) (≥150 mg/dL) or drug treatment for elevated triglycerides, (3) low HDL cholesterol (<40 mg/dL for men and <50 mg/dL for women) or drug treatment for low HDL cholesterol, (4) elevated blood pressure (systolic ≥ 130 mm Hg, or diastolic ≥ 85 mm Hg, or both) or antihypertensive drug treatment for a history of hypertension, and (5) elevated fasting glucose (≥100 mg/dL) or drug treatment for elevated glucose [32]. Plasma TGs and cholesterol were analyzed by enzymatic methods (Hitachi model-917 analyzer), and high-density lipoprotein (HDL)-cholesterol measured in the supernatant following precipitation with dextran sulfate. Blood pressure was measured as the lowest of 2 consecutive resting measurements following 5 min of rest. Fasting plasma glucose and insulin were measured in duplicate on a Beckman AU480 chemistry analyzer (Brea, CA). Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was calculated as [(fasting insulin (µU/mL) × fasting glucose [mmol/L])/22.5] [33]. Leptin, adiponectin and resistin, which measure energy homeostasis and appetite regulation were measured in duplicate by commercially available enzyme-linked immunosorbent assays (ELISA; Boster Biological Technology, Pleasanton, CA, USA).
- Inflammation and Kynurenine Metabolism: Plasma high-sensitivity C-reactive protein (hs-CRP) was measured in duplicate on a Beckman AU480 chemistry analyzer. Plasma KYN (antibodies-online Inc., Limerick, PA, USA), KYNA (Abbexa, LLC, Houston, TX, USA) and PGC-1α (CUSABIO, Houston, TX, USA) were measured in duplicate by commercially available ELISA.
2.5. Interventions
2.5.1. Resistance Training
2.5.2. Cognitively Based Compassion Training
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Effect of RT vs. CBCT on Body Composition, Physical Functioning and Self-Reported Outcomes
3.3. Effect of RT vs. CBCT on Cardiometabolic Health
3.4. Effect of RT vs. CBCT on Kynurenine Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Cancer Society. Breast Cancer Facts and Figures 2015–2016; American Cancer Society, Inc.: Atlanta, GA, USA, 2015. [Google Scholar]
- Jones, D.H.; Nestore, M.; Henophy, S.; Cousin, J.; Comtois, A.S. Increased cardiovascular risk factors in breast cancer survivors identified by routine measurements of body composition, resting heart rate and arterial blood pressure. Springerplus 2014, 3, 150. [Google Scholar] [CrossRef] [Green Version]
- De Moor, J.S.; Mariotto, A.B.; Parry, C.; Alfano, C.M.; Padgett, L.; Kent, E.E.; Forsythe, L.; Scoppa, S.; Hachey, M.; Rowland, J.H. Cancer survivors in the United States: Prevalence across the survivorship trajectory and implications for care. Cancer Epidemiol. Biomark. Prev. 2013, 22, 561–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovelace, D.L.; McDaniel, L.R.; Golden, D. Long-Term Effects of Breast Cancer Surgery, Treatment, and Survivor Care. J. Midwifery Womens Health 2019, 64, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.; Schmitz, K.H.; Lazovich, D.; Virnig, B.A.; Wallace, R.B.; Folsom, A.R. Functional limitations in elderly female cancer survivors. J. Natl. Cancer Inst. 2006, 98, 521–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winters-Stone, K.M.; Bennett, J.A.; Nail, L.; Schwartz, A. Strength, physical activity, and age predict fatigue in older breast cancer survivors. Oncol. Nurs. Forum 2008, 35, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Faller, H.; Strahl, A.; Richard, M.; Niehues, C.; Meng, K. Symptoms of depression and anxiety as predictors of physical functioning in breast cancer patients. A prospective study using path analysis. Acta Oncol. 2017, 56, 1677–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, P.A.; Bower, J.E. Cancer related fatigue: A focus on breast cancer and Hodgkin’s disease survivors. Acta Oncol. 2007, 46, 474–479. [Google Scholar] [CrossRef]
- Kim, S.; Han, J.; Lee, M.Y.; Jang, M.K. The experience of cancer-related fatigue, exercise and exercise adherence among women breast cancer survivors: Insights from focus group interviews. J. Clin. Nurs. 2020, 29, 758–769. [Google Scholar] [CrossRef]
- Bower, J.E.; Ganz, P.A.; Desmond, K.A.; Bernaards, C.; Rowland, J.H.; Meyerowitz, B.E.; Belin, T.R. Fatigue in long-term breast carcinoma survivors: A longitudinal investigation. Cancer 2006, 106, 751–758. [Google Scholar] [CrossRef]
- Imayama, I.; Alfano, C.M.; Neuhouser, M.L.; George, S.M.; Wilder Smith, A.; Baumgartner, R.N.; Baumgartner, K.B.; Bernstein, L.; Wang, C.Y.; Duggan, C.; et al. Weight, inflammation, cancer-related symptoms and health related quality of life among breast cancer survivors. Breast Cancer Res. Treat. 2013, 140, 159–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyon, D.E.; Walter, J.M.; Starkweather, A.R.; Schubert, C.M.; McCain, N.L. Tryptophan degradation in women with breast cancer: A pilot study. BMC Res. Notes 2011, 4, 156. [Google Scholar] [CrossRef] [Green Version]
- Sublette, M.E.; Galfalvy, H.C.; Fuchs, D.; Lapidus, M.; Grunebaum, M.F.; Oquendo, M.A.; Mann, J.J.; Postolache, T.T. Plasma kynurenine levels are elevated in suicide attempters with major depressive disorder. Brain Behav. Immun. 2011, 25, 1272–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, I.; Liu, A. What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert Rev. Neurother. 2015, 15, 719–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joisten, N.; Walzik, D.; Metcalfe, A.J.; Bloch, W.; Zimmer, P. Physical Exercise as Kynurenine Pathway Modulator in Chronic Diseases: Implications for Immune and Energy Homeostasis. Int. J. Tryptophan Res. 2020, 13, 1178646920938688. [Google Scholar] [CrossRef] [PubMed]
- Lavin, K.M.; Perkins, R.K.; Jemiolo, B.; Raue, U.; Trappe, S.W.; Trappe, T.A. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J. Appl. Physiol. 2020, 128, 87–99. [Google Scholar] [CrossRef]
- Jones, S.B.; Thomas, G.A.; Hesselsweet, S.D.; Alvarez-Reeves, M.; Yu, H.; Irwin, M.L. Effect of exercise on markers of inflammation in breast cancer survivors: The Yale exercise and survivorship study. Cancer Prev. Res. 2013, 6, 109–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.C.; Huedo-Medina, T.B.; Pescatello, L.S.; Pescatello, S.M.; Ferrer, R.A.; Johnson, B.T. Efficacy of exercise interventions in modulating cancer-related fatigue among adult cancer survivors: A meta-analysis. Cancer Epidemiol. Biomark. Prev. 2011, 20, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Serra, M.C.; Ryan, A.S.; Ortmeyer, H.K.; Addison, O.; Goldberg, A.P. Resistance training reduces inflammation and fatigue and improves physical function in older breast cancer survivors. Menopause 2018, 25, 211–216. [Google Scholar] [CrossRef]
- Agudelo, L.Z.; Femenia, T.; Orhan, F.; Porsmyr-Palmertz, M.; Goiny, M.; Martinez-Redondo, V.; Correia, J.C.; Izadi, M.; Bhat, M.; Schuppe-Koistinen, I.; et al. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 2014, 159, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Handschin, C.; Chin, S.; Li, P.; Liu, F.; Maratos-Flier, E.; Lebrasseur, N.K.; Yan, Z.; Spiegelman, B.M. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J. Biol. Chem. 2007, 282, 30014–30021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Center for Disease Control and Prevention. About Adult BMI. Available online: https://www.cdc.gov/healthyweight/asses/bmi/adult_bmi/index.html (accessed on 21 August 2021).
- The Multi-Ethnic Study of Atherosclerosis (MESA) Coordinating Center. MESA Exam 6 Field Center Procedures—Manualof Operations. Available online: https://www.mesa-nhlbi.org/default.aspx (accessed on 12 May 2022).
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Steffen, T.M.; Hacker, T.A.; Mollinger, L. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohannon, R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Ski. 2006, 103, 215–222. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Wallace, D.; Chandler, J.M.; Duncan, P.W.; Rooney, E.; Fox, M.; Guralnik, J.M. Physical performance measures in the clinical setting. J. Am. Geriatr. Soc. 2003, 51, 314–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desrosiers, J.; Bravo, G.; Hébert, R.; Dutil, E. Normative data for grip strength of elderly men and women. Am. J. Occup. Ther. 1995, 49, 637–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonstra, A.M.; Schiphorst Preuper, H.R.; Balk, G.A.; Stewart, R.E. Cut-off points for mild, moderate, and severe pain on the visual analogue scale for pain in patients with chronic musculoskeletal pain. Pain 2014, 155, 2545–2550. [Google Scholar] [CrossRef]
- Tuck, M.K.; Chan, D.W.; Chia, D.; Godwin, A.K.; Grizzle, W.E.; Krueger, K.E.; Rom, W.; Sanda, M.; Sorbara, L.; Stass, S.; et al. Standard operating procedures for serum and plasma collection: Early detection research network consensus statement. standard operating procedure integration working group. J. Proteome Res. 2009, 8, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.J.; Crittenden, B.; Cohen, E. Effects of social support on performance outputs and perceived difficulty during. physical exercise. Physiol. Behav. 2021, 239, 113490. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Hernandez, E.; Romero, R.; Campos, D.; Burychka, D.; Diego-Pedro, R.; Baños, R.; Negi, L.T.; Cebolla, A. Cognitively-Based Compassion Training (CBCT(®) in Breast Cancer Survivors: A Randomized Clinical Trial Study. Integr. Cancer Ther. 2018, 17, 684–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodds, S.E.; Pace, T.W.; Bell, M.L.; Fiero, M.; Negi, L.T.; Raison, C.L.; Weihs, K.L. Feasibility of Cognitively-Based Compassion Training (CBCT) for breast cancer survivors: A randomized, wait list controlled pilot study. Support. Care Cancer 2015, 23, 3599–3608. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.E.; Wiskemann, J.; Armbrust, P.; Schneeweiss, A.; Ulrich, C.M.; Steindorf, K. Effects of resistance exercise on fatigue and quality of life in breast cancer patients undergoing adjuvant chemotherapy: A randomized controlled trial. Int. J. Cancer 2015, 137, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Steindorf, K.; Schmidt, M.E.; Klassen, O.; Ulrich, C.M.; Oelmann, J.; Habermann, N.; Beckhove, P.; Owen, R.; Debus, J.; Wiskemann, J.; et al. Randomized, controlled trial of resistance training in breast cancer patients receiving adjuvant radiotherapy: Results on cancer-related fatigue and quality of life. Ann. Oncol. 2014, 25, 2237–2243. [Google Scholar] [CrossRef]
- Pinto, A.C.; de Azambuja, E. Improving quality of life after breast cancer: Dealing with symptoms. Maturitas 2011, 70, 343–348. [Google Scholar] [CrossRef]
- Pickard, A.S.; Neary, M.P.; Cella, D. Estimation of minimally important differences in EQ-5D utility and VAS scores in cancer. Health Qual. Life Outcomes 2007, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Bird, S.B.; Dickson, E.W. Clinically significant changes in pain along the visual analog scale. Ann. Emerg. Med. 2001, 38, 639–643. [Google Scholar] [CrossRef]
- Meneses-Echávez, J.F.; González-Jiménez, E.; Ramírez-Vélez, R. Effects of supervised exercise on cancer-related fatigue in breast cancer survivors: A systematic review and meta-analysis. BMC Cancer 2015, 15, 77. [Google Scholar] [CrossRef] [Green Version]
- Conceição, M.S.; Bonganha, V.; Vechin, F.C.; Berton, R.P.; Lixandrão, M.E.; Nogueira, F.R.; de Souza, G.V.; Chacon-Mikahil, M.P.; Libardi, C.A. Sixteen weeks of resistance training can decrease the risk of metabolic syndrome in healthy postmenopausal women. Clin. Interv. Aging 2013, 8, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Tomeleri, C.M.; Souza, M.F.; Burini, R.C.; Cavaglieri, C.R.; Ribeiro, A.S.; Antunes, M.; Nunes, J.P.; Venturini, D.; Barbosa, D.S.; Sardinha, L.B.; et al. Resistance training reduces metabolic syndrome and inflammatory markers in older women: A randomized controlled trial. J. Diabetes 2018, 10, 328–337. [Google Scholar] [CrossRef]
- Son, W.M.; Park, J.J. Resistance Band Exercise Training Prevents the Progression of Metabolic Syndrome in Obese Postmenopausal Women. J. Sports Sci. Med. 2021, 20, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Pace, T.W.; Negi, L.T.; Adame, D.D.; Cole, S.P.; Sivilli, T.I.; Brown, T.D.; Issa, M.J.; Raison, C.L. Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress. Psychoneuroendocrinology 2009, 34, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Pace, T.W.; Negi, L.T.; Dodson-Lavelle, B.; Ozawa-de Silva, B.; Reddy, S.D.; Cole, S.P.; Danese, A.; Craighead, L.W.; Raison, C.L. Engagement with Cognitively-Based Compassion Training is associated with reduced salivary C-reactive protein from before to after training in foster care program adolescents. Psychoneuroendocrinology 2013, 38, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Berger, K.; Fuchs, D. Effects of a caloric restriction weight loss diet on tryptophan metabolism and inflammatory biomarkers in overweight adults. Eur. J. Nutr. 2015, 54, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Heischmann, S.; Gano, L.B.; Quinn, K.; Liang, L.P.; Klepacki, J.; Christians, U.; Reisdorph, N.; Patel, M. Regulation of kynurenine metabolism by a ketogenic diet. J. Lipid Res. 2018, 59, 958–966. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, P.; Schmidt, M.E.; Prentzell, M.T.; Berdel, B.; Wiskemann, J.; Kellner, K.H.; Debus, J.; Ulrich, C.; Opitz, C.A.; Steindorf, K. Resistance Exercise Reduces Kynurenine Pathway Metabolites in Breast Cancer Patients Undergoing Radiotherapy. Front. Oncol. 2019, 9, 962. [Google Scholar] [CrossRef]
- Agudelo, L.Z.; Ferreira, D.M.S.; Dadvar, S.; Cervenka, I.; Ketscher, L.; Izadi, M.; Zhengye, L.; Furrer, R.; Handschin, C.; Venckunas, T.; et al. Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance. Nat. Commun. 2019, 10, 2767. [Google Scholar] [CrossRef]
Resistance Training (N = 22) | Cognitively-Based Compassion Training (N = 10) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Change | Change | Pre | Post | Change | Change | Overall Group | Overall Time | Group x Time | |
p-Value | p-Value | p-Value | p-Value | p-Value | |||||||
Race | N, % | N, % | |||||||||
Caucasian | 11, 50 | - | - | 8, 80 | - | - | - | - | - | - | |
African American | 11, 50 | - | - | 2, 20 | - | - | - | - | - | - | |
Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | ||||||
Age (years) | 61.6 ± 1.5 | - | - | - | 67.2 ± 1.2 | - | - | - | - | - | - |
Post Active Breast Cancer (months) | 53.3 ± 8.7 | - | - | - | 74.1 ± 11.1 | - | - | - | - | - | - |
BMI (kg/m2) | 32.7 ± 1.4 | 29.3 ± 2.2 | −3.4 ± 2.2 | 0.14 | 28.9 ± 4.5 | 29.4 ± 1.5 | 0.5 ± 0.2 | 0.06 | 0.25 | 0.44 | 0.38 |
Physical Functioning | |||||||||||
6MWD (m) | 466.4 ± 21.6 | 479.9 ± 20.7 | 13.6 ± 4.6 | <0.01 | 468.3 ± 23.0 | 471.1 ± 22.2 | 2.8 ± 6.0 | 0.66 | 0.92 | 0.05 | 0.18 |
TUG (s) | 7.0 ± 0.5 | 6.6 ± 0.9 | −0.5 ± 0.3 | 0.12 | 6.6 ± 0.4 | 6.6 ± 0.4 | 0.0 ± 0.2 | 1.00 | 0.73 | 0.32 | 0.32 |
Usual Gait Speed (m/s) | 1.2 ± 0.1 | 1.2 ± 0.1 | 0.0 ± 0.0 | 0.07 | 1.1 ± 0.1 | 1.1 ± 0.2 | 0.0 ± 0.0 | 0.90 | 0.67 | 0.87 | 0.76 |
Chair Stands | 10.9 ± 0.6 | 9.5 ± 0.6 | −1.3 ± 0.0 | <0.01 | 11.2 ± 0.8 | 10.7 ± 0.8 | −0.5 ± 0.4 | 0.28 | 0.15 | <0.01 | 0.15 |
Hand Grip Strength-Dominate (kg) | 21.3 ± 0.1 | 22.9 ± 1.1 | 1.6 ± 0.1 | 0.05 | 21.1 ± 1.3 | 20.6 ± 1.6 | −0.5 ± 1.1 | 0.67 | 0.46 | 0.44 | 0.14 |
Self-Report Measures (VAS) | |||||||||||
Fatigue (mm) | 45.6 ± 6.0 | 26.9 ± 5.9 | −18.8 ± 4.4 | <0.01 | 46.7 ± 10.0 | 35.5 ± 9.7 | −11.2 ± 5.4 | 0.07 | 0.64 | <0.01 | 0.32 |
Quality of Life (mm) | 73.7 ± 3.7 | 77.8 ± 3.5 | 4.1 ± 2.9 | 0.17 | 77.7 ± 5.0 | 84.2 ± 2.7 | 6.5 ± 3.3 | 0.08 | 0.35 | 0.04 | 0.62 |
Tiredness (mm) | 44.8 ± 6.7 | 33.5 ± 5.4 | −11.3 ± 7.1 | 0.13 | 37.2 ± 8.9 | 36.7 ± 8.8 | −0.5 ± 0.9 | 0.58 | 0.82 | 0.28 | 0.32 |
Pain (mm) | 32.1 ± 5.1 | 20.2 ± 4.4 | −11.9 ± 5.5 | 0.04 | 13.2 ± 4.3 | 10.6 ± 3.5 | −2.6 ± 3.5 | 0.47 | 0.03 | 0.10 | 0.28 |
Cardiometabolic Health | |||||||||||
HOMA-IR | 6.1 ± 1.4 | 8.7 ± 2.6 | 2.6 ± 2.4 | 0.28 | 10.6 ± 4.2 | 7.7 ± 1.5 | −4.8 ± 4.7 | 0.33 | 0.81 | 0.64 | 0.12 |
MetS | 2.7 ± 0.4 | 2.4 ± 0.3 | −0.3 ± 0.2 | 0.20 | 2.6 ± 0.6 | 2.9 ± 0.4 | 0.3 ± 0.3 | 0.39 | 0.74 | 0.97 | 0.15 |
Leptin (pg/mL) | 34,148 ± 3940 | 35,170 ± 4616 | 1022 ± 2692 | 0.71 | 18,083 ± 3097 | 28,327 ± 6337 | 10,244 ± 5851 | 0.11 | 0.09 | 0.05 | 0.11 |
Adiponectin (ng/mL) | 920.5 ± 4.3 | 894.8 ± 25.4 | −25.7 ± 23.6 | 0.29 | 883.1 ± 19.7 | 911.3 ± 8.3 | 28.2 ± 22.8 | 0.25 | 0.62 | 0.95 | 0.16 |
Resistin (pg/mL) | 16,941 ± 733 | 16,660 ± 597 | −281 ± 965 | 0.69 | 15,334 ± 1669 | 15,488 ± 1236 | 155 ± 1286 | 0.91 | 0.27 | 0.93 | 0.75 |
Inflammation and KYN Metabolism | |||||||||||
hs-CRP (mg/L) | 2.7 ± 0.6 | 2.8 ± 1.0 | 0.1 ± 0.6 | 0.85 | 2.9 ± 0.9 | 2.2 ± 0.5 | −0.7 ± 0.9 | 0.47 | 0.86 | 0.58 | 0.44 |
KYN (pg/mL) | 178.5 ± 15.6 | 112.3 ± 7.0 | −66.2 ± 14.7 | <0.01 | 103.5 ± 10.2 | 136.6 ± 19.3 | 33.1 ± 24.4 | 0.21 | 0.04 | 0.06 | 0.02 |
KYNA (pg/mL) | 26.2 ± 2.5 | 29.5 ± 2.3 | 3.4 ± 2.1 | 0.13 | 29.2 ± 3.0 | 34.3 ± 2.9 | 5.0 ± 4.7 | 0.31 | 0.25 | 0.07 | 0.72 |
PGC−1α (pg/mL) | 1073 ± 137 | 1477 ± 209 | 404 ± 152 | 0.02 | 856 ± 127 | 840 ± 129 | −16 ± 124 | 0.90 | 0.09 | 0.08 | 0.05 |
KYN/KYNA Ratio | 8.9 ± 1.6 | 4.2 ± 0.3 | −4.8 ± 1.5 | <0.01 | 3.6 ± 0.2 | 4.0 ± 0.4 | 0.4 ± 0.6 | 0.44 | 0.04 | 0.06 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robbins, R.N.; Kelleher, J.L.; Vellanki, P.; O’Connor, J.C.; Mascaro, J.S.; Nocera, J.R.; Serra, M.C. Kynurenine Metabolism as a Mechanism to Improve Fatigue and Physical Function in Postmenopausal Breast Cancer Survivors Following Resistance Training. J. Funct. Morphol. Kinesiol. 2022, 7, 45. https://doi.org/10.3390/jfmk7020045
Robbins RN, Kelleher JL, Vellanki P, O’Connor JC, Mascaro JS, Nocera JR, Serra MC. Kynurenine Metabolism as a Mechanism to Improve Fatigue and Physical Function in Postmenopausal Breast Cancer Survivors Following Resistance Training. Journal of Functional Morphology and Kinesiology. 2022; 7(2):45. https://doi.org/10.3390/jfmk7020045
Chicago/Turabian StyleRobbins, Ronna N., Jessica L. Kelleher, Priyathama Vellanki, Jason C. O’Connor, Jennifer S. Mascaro, Joe R. Nocera, and Monica C. Serra. 2022. "Kynurenine Metabolism as a Mechanism to Improve Fatigue and Physical Function in Postmenopausal Breast Cancer Survivors Following Resistance Training" Journal of Functional Morphology and Kinesiology 7, no. 2: 45. https://doi.org/10.3390/jfmk7020045
APA StyleRobbins, R. N., Kelleher, J. L., Vellanki, P., O’Connor, J. C., Mascaro, J. S., Nocera, J. R., & Serra, M. C. (2022). Kynurenine Metabolism as a Mechanism to Improve Fatigue and Physical Function in Postmenopausal Breast Cancer Survivors Following Resistance Training. Journal of Functional Morphology and Kinesiology, 7(2), 45. https://doi.org/10.3390/jfmk7020045