Do the Fastest Open-Water Swimmers have A Higher Speed in Middle- and Long-Distance Pool Swimming Events?
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fédération Internationale de Natation FINA. Available online: http://www.fina.org/content/fina-rules-regulations (accessed on 24 September 2017).
- Baldassarre, R.; Bonifazi, M.; Zamparo, P.; Piacentini, M.F. Characteristics and Challenges of Open-Water Swimming Performance: A Review. Int. J. Sports Physiol. Perform. 2017, 12, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, R.; Bonifazi, M.; Piacentini, M.F. Pacing profile in the main international open-water swimming competitions. Eur. J. Sport Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, R.; Bonifazi, M.; Piacentini, M.F. Sismes IX National Congress. Pacing profile of 10-km open-water swimming in the Olympic Games and World Championships. Sport Sci. Health 2017, 13, S1–S102. [Google Scholar]
- Rodriguez, L.; Veiga, S. Effect of the Pacing Strategies on the Open Water 10km World Swimming Championships Performances. Int. J. Sports Physiol. Perform. 2017, 13, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, J.M.; Einarsson, I.; Sekulic, D.; Garcia-Hermoso, A. Analysis of Pacing Strategies in 10 Km Open Water Swimming in International Events. Kinesiol. Int. J. Fundam. Appl. Kinesiol. 2018, 50, 70–71. [Google Scholar] [CrossRef]
- Omega Timining. Available online: http://www.omegatiming.com/index.htm (accessed on 24 September 2017).
- Shaw, G.; Koivisto, A.; Gerrard, D.; Burke, L.M. Nutrition Considerations for Open-Water Swimming. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 373–381. [Google Scholar] [CrossRef] [Green Version]
- International Olympic Committee. Available online: https://www.olympic.org (accessed on 24 September 2017).
- Wakayoshi, K.; Yoshida, T.; Kasai, T.; Moritani, T.; Mutoh, Y.; Miyashita, M. Validity of critical velocity as swimming fatigue threshold in the competitive swimmer. Ann. Physiol. Anthropol. 1992, 11, 301–307. [Google Scholar] [CrossRef]
- di Prampero, P.E.; Dekerle, J.; Capelli, C.; Zamparo, P. The critical velocity in swimming. Eur. J. Appl. Physiol. 2008, 102, 165–171. [Google Scholar] [CrossRef]
- Toubekis, A.G.; Tokmakidis, S.P. Metabolic responses at various intensities relative to critical swimming velocity. J. Strength Cond. Res. 2013, 27, 1731–1741. [Google Scholar] [CrossRef]
- Zacca, R.; Wenzel, B.M.; Piccin, J.S.; Marcilio, N.R.; Lopes, A.L.; De Souza Castro, F.A. Critical velocity, anaerobic distance capacity, maximal instantaneous velocity and aerobic inertia in sprint and endurance young swimmers. Eur. J. Appl. Physiol. 2010, 110, 121–131. [Google Scholar] [CrossRef]
- Gourgoulis, V.; Boli, A.; Aggeloussis, N.; Toubekis, A.; Antoniou, P.; Kasimatis, P.; Vezos, N.; Kambas, A.; Mavromatis, G.; Gourgoulis, V.; et al. The effect of leg kick on sprint front crawl swimming. J. Sports Sci. 2014, 32, 278–289. [Google Scholar] [CrossRef]
- Peinado, A.B.; Benito, P.J.; Díaz, V.; González, C.; Zapico, A.G.; Álvarez, M.; Maffulli, N.; Calderón, F.J. Discriminant analysis of the speciality of elite cyclists. J. Hum. Sport Exerc. 2011, 6, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Noordzij, M.; Tripepi, G.; Dekker, F.W.; Zoccali, C.; Tanck, M.W.; Jager, K.J. Sample size calculations: Basic principles and common pitfalls. Nephrol. Dial. Transplant. 2010, 25, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Pollock, M.L.; Jackson, A.S.; Pate, R.R. Discriminant analysis of physiological differences between good and elite distance runners. Res. Q. Exerc. Sport 1980, 51, 521–532. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Ebert, T.; Sassi, A.; Menaspà, P.; Rampinini, E.; Martin, D.T. Level ground and uphill cycling ability in elite female mountain bikers and road cyclists. Eur. J. Appl. Physiol. 2008, 102, 335–341. [Google Scholar] [CrossRef]
- Padilla, S.; Mujika, I.; Orbananos, J.; Santisteban, J.; Angulo, F.; Goiriena, J.J.; Orbañanos, J.; Santisteban, J.; Angulo, F.; José Goiriena, J. Exercise intensity and load during mass-start stage races in professional road cycling. Med. Sci. Sports Exerc. 2001, 33, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Chatard, J.-C.; Wilson, B. Drafting Distance in Swimming. Med. Sci. Sport. Exerc. 2003, 35, 1176–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Olympic Committee Rio 2016. Available online: https://www.olympic.org/rio-2016 (accessed on 24 September 2017).
- Menaspà, P.; Quod, M.; Martin, D.T.; Peiffer, J.J.; Abbiss, C.R. Physical Demands of Sprinting in Professional Road Cycling. Int. J. Sports Med. 2015, 36, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; de Koning, J.J.; Hettinga, F.; Lampen, J.; Dodge, C.; Bobbert, M.; Porcari, J.P. Effect of competitive distance on energy expenditure during simulated competition. Int. J. Sports Med. 2004, 25, 198–204. [Google Scholar] [PubMed]
- Zamparo, P.; Capelli, C.; Pendergast, D. Energetics of swimming: A historical perspective. Eur. J. Appl. Physiol. 2011, 111, 367–378. [Google Scholar] [CrossRef] [PubMed]
G1 | G2 | G3 | G4 | F | p | |
---|---|---|---|---|---|---|
PB-200 | 1.60 ± 0.06 | 1.62 ± 0.04 * | 1.59 ± 0.04 | 1.58 ± 0.04 | F(3,232) = 7.40 | <0.001 |
PB-400 | 1.58 ± 0.04 * | 1.57 ± 0.04 * | 1.55 ± 0.03 | 1.54 ± 0.04 | F(3,232) = 12.50 | <0.001 |
PB_800 | 1.55 ± 0.03 * | 1.55 ± 0.03 * | 1.52 ± 0.04 | 1.50 ± 0.04 | F(3,232) = 20.22 | <0.001 |
PB-1500 | 1.53 ± 0.02 * | 1.52 ± 0.03 * | 1.49 ± 0.04 | 1.47 ± 0.05 | F(3,232) = 21.23 | <0.001 |
SPB-200 | 1.58 ± 0.06 | 1.58 ± 0.04 † | 1.56 ± 0.04 | 1.55 ± 0.04 | F(3,232) = 5.48 | 0.001 |
SPB-400 | 1.56 ± 0.04 * | 1.55 ± 0.03 * | 1.53 ± 0.03 | 1.52 ± 0.04 | F(3,232) = 12.73 | <0.001 |
SPB-800 | 1.54 ± 0.03 * | 1.52 ± 0.03 * | 1.50 ± 0.04 | 1.48 ± 0.04 | F(3,232) = 17.49 | <0.001 |
SPB-1500 | 1.51 ± 0.02 * | 1.50 ± 0.03 * | 1.47 ± 0.04 | 1.45 ± 0.05 | F(3,232) = 19.85 | <0.001 |
CV-PB-200-400 | 1.55 ± 0.03 * | 1.53 ± 0.03 * | 1.50 ± 0.04 | 1.49 ± 0.04 | F(3,232) = 13.87 | <0.001 |
CV-PB-400-800 | 1.53 ± 0.03 * | 1.52 ± 0.03 * | 1.49 ± 0.05 | 1.46 ± 0.05 | F(3,232) = 19.78 | <0.001 |
CV-PB-800-1500 | 1.50 ± 0.02 * | 1.48 ± 0.03 * | 1.46 ± 0.04 | 1.44 ± 0.06 | F(3,232) = 16.54 | <0.001 |
CV-PB-400-800-1500 | 1.51 ± 0.02 * | 1.49 ± 0.03 * | 1.47 ± 0.04 | 1.45 ± 0.05 | F(3,232) = 20.01 | <0.001 |
CV-PB-All | 1.51 ± 0.02 * | 1.50 ± 0.03 * | 1.47 ± 0.04 | 1.45 ± 0.05 | F(3,232) = 19.41 | <0.001 |
CV-SPB-200-400 | 1.54 ± 0.05 * | 1.51 ± 0.03 * | 1.49 ± 0.05 | 1.48 ± 0.05 | F(3,232) = 11.43 | <0.001 |
CV-SPB-400-800 | 1.52 ± 0.03 * | 1.49 ± 0.03 * | 1.47 ± 0.04 | 1.45 ± 0.05 | F(3,232) = 17.00 | <0.001 |
CV-SPB-800-1500 | 1.48 ± 0.03 * | 1.47 ± 0.03 * | 1.44 ± 0.05 | 1.42 ± 0.06 | F(3,232) = 15.49 | <0.001 |
CV-SPB-400-800-1500 | 1.50 ± 0.02 * | 1.48 ± 0.03 * | 1.45 ± 0.04 | 1.43 ± 0.05 | F(3,232) = 18.65 | <0.001 |
CV-SPB-All | 150 ± 0.02 * | 1.48 ± 0.03 * | 1.45 ± 0.04 | 1.44 ± 0.05 | F(3,232) = 19.63 | <0.001 |
DF 1 | DF 2 | DF 3 | |
---|---|---|---|
PB-200 | −3.06 | 1.39 | −1.40 |
PB-400 | 2.37 | −2.14 | 3.78 |
PB_800 | 3.17 | −0.02 | −1.61 |
PB-1500 | 4.74 | 2.88 | −4.23 |
SPB-200 | 0.36 | 0.77 | 0.42 |
SPB-400 | −0.19 | −1.67 | −1.41 |
SPB-800 | 0.36 | −1.36 | −0.40 |
SPB-1500 | −3.13 | 3.53 | 5.28 |
CV-PB-200-400 | −1.99 | 0.55 | −1.30 |
CV-PB-400-800 | −2.03 | −0.19 | 3.89 |
CV-PB-800-1500 | −0.52 | −2.09 | 6.13 |
CV-PB-400-800-1500 | 1.50 | −1.84 | −3.98 |
CV-PB-All | −4.86 | 2.39 | −0.43 |
CV-SPB-200-400 | 0.45 | 0.64 | 0.24 |
CV-SPB-400-800 | 0.73 | −0.24 | 0.75 |
CV-SPB-800-1500 | 1.09 | 1.10 | 0.21 |
CV-SPB-400-800-1500 | 1.04 | −3.92 | −1.16 |
CV-SPB-All | 0.29 | 0.60 | −4.13 |
G1 | G2 | G3 | G4 | F | P | |
---|---|---|---|---|---|---|
PB-200 | 1.80 ± 0.06 * | 1.76 ± 0.05 * | 1.74 ± 0.06 | 1.72 ± 0.05 | F(3,252) = 13.28 | <0.001 |
PB-400 | 1.74 ± 0.04 * | 1.71 ± 0.04 * | 1.67 ± 0.05 | 1.65 ± 0.05 | F(3,252) = 17.67 | <0.001 |
PB_800 | 1.70 ± 0.03 a | 1.65 ± 0.03 | 1.62 ± 0.05 | 1.60 ± 0.05 | F(3,252) = 21.21 | <0.001 |
PB-1500 | 1.66 ± 0.03 * | 1.63 ± 0.03 * | 1.60 ± 0.05 | 1.58 ± 0.05 | F(3,252) = 20.85 | <0.001 |
SPB-200 | 1.78 ± 0.04 * | 1.74 ± 0.05 † | 1.71 ± 0.06 † | 1.68 ± 0.06 | F(3,252) = 14.53 | <0.001 |
SPB-400 | 1.71 ± 0.04 * | 1.69 ± 0.04 * | 1.65 ± 0.06 | 1.63 ± 0.05 | F(3,252) = 17.48 | <0.001 |
SPB-800 | 1.67 ± 0.04 a | 1.63 ± 0.04 * | 1.59 ± 0.05 | 1.58 ± 0.05 | F(3,252) = 23.24 | <0.001 |
SPB-1500 | 1.65 ± 0.03 * | 1.62 ± 0.03 * | 1.57 ± 0.05 | 1.56 ± 0.05 | F(3,252) = 22.10 | <0.001 |
CV-PB-200-400 | 1.68 ± 0.04 * | 1.65 ± 0.04 * | 1.62 ± 0.06 | 1.60 ± 0.06 | F(3,252) = 13.81 | <0.001 |
CV-PB-400-800 | 1.66 ± 0.03 a | 1.60 ± 0.03 * | 1.57 ± 0.06 | 1.56 ± 0.05 | F(3,252) = 18.90 | <0.001 |
CV-PB-800-1500 | 1.62 ± 0.03 * | 1.61 ± 0.03 * | 1.57 ± 0.05 | 1.55 ± 0.05 | F(3,252) = 17.11 | <0.001 |
CV-PB-400-800-1500 | 1.64 ± 0.03 * | 1.61 ± 0.03 * | 1.57 ± 0.05 | 1.56 ± 0.05 | F(3,252) = 19.48 | <0.001 |
CV-PB-All | 1.64 ± 0.03 * | 1.61 ± 0.03 * | 1.58 ± 0.05 | 1.56 ± 0.05 | F(3,252) = 19.39 | <0.001 |
CV-SPB-200-400 | 1.65 ± 0.06 * | 1.65 ± 0.05 * | 1.59 ± 0.07 | 1.58 ± 0.06 | F(3,252) = 12.20 | <0.001 |
CV-SPB-400-800 | 1.64 ± 0.04 * | 1.58 ± 0.05 * | 1.55 ± 0.06 | 1.53 ± 0.06 | F(3,252) = 19.11 | <0.001 |
CV-SPB-800-1500 | 1.62 ± 0.04 * | 1.60 ± 0.04 * | 1.55 ± 0.06 | 1.54 ± 0.06 | F(3,252) = 15.42 | <0.001 |
CV-SPB-400-800-1500 | 1.63 ± 0.04 * | 1.59 ± 0.04 * | 1.55 ± 0.05 | 1.53 ± 0.06 | F(3,252) = 20.66 | <0.001 |
CV-SPB-All | 1.63 ± 0.03 * | 1.60 ± 0.03 * | 1.55 ± 0.05 | 1.54 ± 0.06 | F(3,252) = 21.35 | <0.001 |
DF 1 | DF 2 | DF 3 | |
---|---|---|---|
PB-200 | −1.73 | 1.31 | 0.13 |
PB-400 | 1.89 | −3.92 | −1.56 |
PB_800 | 1.30 | 1.71 | 2.71 |
PB-1500 | 2.32 | −0.88 | 1.47 |
SPB-200 | 0.98 | −0.26 | 2.80 |
SPB-400 | −0.98 | 2.13 | −2.27 |
SPB-800 | 0.13 | −3.15 | −4.83 |
SPB-1500 | −0.97 | 2.52 | 0.14 |
CV-PB-200-400 | −1.43 | 1.98 | 0.49 |
CV-PB-400-800 | 0.17 | −0.49 | 0.67 |
CV-PB-800-1500 | 0.96 | 2.72 | 3.12 |
CV-PB-400-800-1500 | −0.36 | −0.02 | −3.51 |
CV-PB-All | −3.28 | −1.89 | −2.65 |
CV-SPB-200-400 | 0.79 | −0.21 | 2.81 |
CV-SPB-400-800 | −0.35 | 3.56 | 4.46 |
CV-SPB-800-1500 | −1.39 | 3.96 | 2.37 |
CV-SPB-400-800-1500 | 2.70 | −7.01 | −0.93 |
CV-SPB-All | 0.02 | −0.52 | −3.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldassarre, R.; Pennacchi, M.; La Torre, A.; Bonifazi, M.; Piacentini, M.F. Do the Fastest Open-Water Swimmers have A Higher Speed in Middle- and Long-Distance Pool Swimming Events? J. Funct. Morphol. Kinesiol. 2019, 4, 15. https://doi.org/10.3390/jfmk4010015
Baldassarre R, Pennacchi M, La Torre A, Bonifazi M, Piacentini MF. Do the Fastest Open-Water Swimmers have A Higher Speed in Middle- and Long-Distance Pool Swimming Events? Journal of Functional Morphology and Kinesiology. 2019; 4(1):15. https://doi.org/10.3390/jfmk4010015
Chicago/Turabian StyleBaldassarre, Roberto, Maddalena Pennacchi, Antonio La Torre, Marco Bonifazi, and Maria Francesca Piacentini. 2019. "Do the Fastest Open-Water Swimmers have A Higher Speed in Middle- and Long-Distance Pool Swimming Events?" Journal of Functional Morphology and Kinesiology 4, no. 1: 15. https://doi.org/10.3390/jfmk4010015
APA StyleBaldassarre, R., Pennacchi, M., La Torre, A., Bonifazi, M., & Piacentini, M. F. (2019). Do the Fastest Open-Water Swimmers have A Higher Speed in Middle- and Long-Distance Pool Swimming Events? Journal of Functional Morphology and Kinesiology, 4(1), 15. https://doi.org/10.3390/jfmk4010015