The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Highlights on Recent Papers in Strength and Conditioning
Abstract
:1. Introduction
2. Recent Papers Regarding Strength and Conditioning
2.1. Improving Muscle Strength Using Eccentric Ergometry Training
Highlight by Joel A. Walsh
2.2. Probing the Early Neural Adaptations to Strength Training
Highlight by Darryl J. McAndrew
2.3. What Does the Study of Different Modes of Muscle Contraction Tell Us about the Neural Control?
Highlight by Paul J. Stapley
2.4. Eccentric Training Effects on Biceps Femoris (Long Head) Architecture
Highlight by Eleftherios Kellis
2.5. Resistance Training in Children and Adolescents
Highlight by Christoph Mickel
2.6. Responders and Nonresponders in Resistance Training
Highlight by Antonio Paoli
Conflicts of Interest
References
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2016, 47, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Hoppeler, H. Moderate load eccentric exercise; A distinct novel training modality. Front. Physiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, N.J.; Kapchinsky, S.; Konokhova, Y.; Gouspillou, G.; de Sousa Sena, R.; Jagoe, R.T.; Baril, J.; Carver, T.E.; Andersen, R.E.; Richard, R. Eccentric ergometer training promotes locomotor muscle strength but not mitochondrial adaptation in patients with severe chronic obstructive pulmonary disease. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.J.; Stevens, S.L.; Fuller, D.K.; Caputo, J.L. Eccentric resistance training in adults with and without spinal cord injuries. Int. J. Exerc. Sci. 2017, 10, 154–165. [Google Scholar] [CrossRef]
- LaStayo, P.; Marcus, R.; Dibble, L.; Wong, B.; Pepper, G. Eccentric versus traditional resistance exercise for older adult fallers in the community: A randomized trial within a multi-component fall reduction program. BMC Geriatr. 2017, 17, 149. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.; Lüthy, F.; Kroell, J.; Müller, E.; Hoppeler, H.; Vogt, M. Effects of eccentric cycle ergometry in alpine skiers. Int. J. Sports Med. 2010, 31, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Leong, C.; McDermott, W.; Elmer, S.; Martin, J. Chronic eccentric cycling improves quadriceps muscle structure and maximum cycling power. Int. J. Sports Med. 2014, 35, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Vogt, M.; Hoppeler, H.H. Eccentric exercise: Mechanisms and effects when used as training regime or training adjunct. J. Appl. Physiol. 2014, 116, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Gill, N.D.; Deans, N.; Zhou, S. Lack of human muscle architectural adaptation after short-term strength training. Muscle Nerve 2007, 35, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Akima, H.; Takahashi, H.; Kuno, S.Y.; Masuda, K.; Masuda, T.; Shimojo, H.; Anno, I.; Itai, Y.; Katsuta, S. Early phase adaptations of muscle use and strength to isokinetic training. Med. Sci. Sports Exerc. 1999, 31, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.J.; Barton, J.; Hsu, M.; Lee, M. The effect of strength training on the force of twitches evoked by corticospinal stimulation in humans. Acta Physiol. 2009, 197, 161–173. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, M.J.; Hayward, C.M.; Davies, C.T. Isometric training in human elbow flexor muscles. The effects on voluntary and electrically evoked forces. J. Bone Jt. Surg. Br. 1983, 65, 355–358. [Google Scholar]
- McDonagh, M.J.N.; Davies, C.T.M. Adaptive response of mammalian skeletal muscle to exercise with high loads. Eur. J. Appl. Physiol. Occup. Physiol. 1984, 52, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.A.; Rutherford, O.M.; Parker, D.F. Physiological changes in skeletal muscle as a result of strength training. Q. J. Exp. Physiol. 1989, 74, 233–256. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, J.D.; Elder, G.C.B.; Sale, D.G.; Moroz, J.R.; Sutton, J.R. Effects of strength training and immobilization on human muscle fibres. Eur. J. Appl. Physiol. Occup. Physiol. 1980, 43, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Goldspink, G. The proliferation of myofibrils during muscle fibre growth. J. Cell Sci. 1970, 6, 593–603. [Google Scholar] [PubMed]
- Christie, A.; Kamen, G. Short-term training adaptations in maximal motor unit firing rates and afterhyperpolarization duration. Muscle Nerve 2010, 41, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Kamen, G.; Knight, C.A. Training-related adaptations in motor unit discharge rate in young and older adults. J. Gerontol. Ser. A 2004, 59, 1334–1338. [Google Scholar] [CrossRef]
- Tracy, B.L.; Maluf, K.S.; Stephenson, J.L.; Hunter, S.K.; Enoka, R.M. Variability of motor unit discharge and force fluctuations across a range of muscle forces in older adults. Muscle Nerve 2005, 32, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Kornatz, K.W.; Christou, E.A.; Enoka, R.M. Practice reduces motor unit discharge variability in a hand muscle and improves manual dexterity in old adults. J. Appl. Physiol. 2005, 98, 2072. [Google Scholar] [CrossRef] [PubMed]
- Milner-Brown, H.S.; Stein, R.B.; Lee, R.G. Synchronization of human motor units: Possible roles of exercise and supraspinal reflexes. Electroencephalogr. Clin. Neurophysiol. 1975, 38, 245–254. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; Barry, B.K.; Jones, M.D.; Gandevia, S.C.; Taylor, J.L. Effects of four weeks of strength training on the corticomotoneuronal pathway. Med. Sci. Sports Exerc. 2017. [Google Scholar] [CrossRef] [PubMed]
- Touge, T.; Urai, Y.; Ikeda, K.; Kume, K.; Deguchi, K. Transcranial magnetic stimulation with the maximum voluntary muscle contraction facilitates motor neuron excitability and muscle force. Neurol. Res. Int. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Urbach, D.; Berth, A.; Awiszus, F. Effect of transcranial magnetic stimulation on voluntary activation in patients with quadriceps weakness. Muscle Nerve 2005, 32, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Urbach, D.; Awiszus, F. Effects of transcranial magnetic stimulation on results of the twitch interpolation technique. Muscle Nerve 2000, 23, 1125–1128. [Google Scholar] [CrossRef]
- Urbach, D.; Awiszus, F. Stimulus strength related effect of transcranial magnetic stimulation on maximal voluntary contraction force of human quadriceps femoris muscle. Exp. Brain Res. 2002, 142, 25–31. [Google Scholar] [CrossRef] [PubMed]
- McAndrew, D.J.; Hurley, D.M.; Walsh, J.A.; Stapley, P.J. Short duration strength training increases corticospinal efficacy in healthy subjects. Brain Stimul. Basic. Transl. Clin. Res. Neuromodulation 2017, 10, 422. [Google Scholar] [CrossRef]
- Duchateau, J.; Enoka, R.M. Neural control of shortening and lengthening contractions: Influence of task constraints. J. Physiol. 2008, 586, 5853–5864. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, J.; Enoka, R.M. Neural control of lengthening contractions. J. Exp. Biol. 2016, 219, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, J.; Baudry, S. Insights into the neural control of eccentric contractions. J. Appl. Physiol. 2014, 116, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Hahn, D.; Hoffman, B.W.; Carroll, T.J.; Cresswell, A.G. Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort. PLoS ONE 2012, 7, e49907. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Siemionow, V.; Sahgal, V.; Xiong, F.; Yue, G.H. Greater movement-related cortical potential during human eccentric versus concentric muscle contractions. J. Neurophysiol. 2001, 86, 1764. [Google Scholar] [PubMed]
- Garnier, Y.M.; Lepers, R.; Stapley, P.J.; Papaxanthis, C.; Paizis, C. Changes in cortico-spinal excitability following uphill versus downhill treadmill exercise. Behav. Brain Res. 2017, 317, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Brockett, C.L.; Morgan, D.L.; Proske, U. Predicting hamstring strain injury in elite athletes. Med. Sci. Sports Exerc. 2004, 36, 379–387. Available online: http://www.ncbi.nlm.nih.gov/pubmed/15076778 (accessed on 11 October 2017). [CrossRef] [PubMed]
- Potier, T.G.; Alexander, C.M.; Seynnes, O.R. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur. J. Appl. Physiol. 2009, 105, 939–944. Available online: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19271232 (accessed on 10 March 2009). [CrossRef] [PubMed]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Biceps Femoris Architecture and Strength in Athletes with a Previous Anterior Cruciate Ligament Reconstruction. Med. Sci. Sports Exerc. 2016, 48, 337–345. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26429732 (accessed on 11 October 2017). [CrossRef] [PubMed] [Green Version]
- Alonso-Fernandez, D.; Docampo-Blanco, P.; Martinez-Fernandez, J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scand. J. Med. Sci. Sports 2017. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.N.; Duhig, S.J.; Timmins, R.G.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: Implications for injury prevention. Br. J. Sports Med. 2017, 51, 469–477. Available online: http://bjsm.bmj.com/lookup/doi/10.1136/bjsports-2016-096130 (accessed on 11 October 2017). [CrossRef] [PubMed]
- Seymore, K.D.; Domire, Z.J.; DeVita, P.; Rider, P.M.; Kulas, A.S. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur. J. Appl. Physiol. 2017, 117, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Young, J.D.; Whitten, J.H.D.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; Lima, C.D.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004; Volume 16, pp. 607–608. [Google Scholar]
- Herbst, K.L.; Bhasin, S. Testosterone Action on Skeletal Muscle. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Eliakim, A.; Nemet, D.; Cooper, D.M. Exercise, Training and GH-IGF-1 Axis. In The Endocrince System in Sports and Exercise (Vol. XI of the Encyclopedia of Sports Medicine); Kraemer, W., Rogol, D., Eds.; Blackwell Publishing Ltd.: Oxford, UK; pp. 165–179.
- Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A.; Dooly, C.; Feigenbaum, M.S.; Fleck, S.J.; Franklin, B.; Fry, A.C.; Hoffman, J.R.; et al. American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2002, 34, 364–380. [Google Scholar] [PubMed]
- Moritani, T.; deVries, H.A. Neural factors versus hypertrophy in the time course of muscle strength gain. Am. J. Phys. Med. 1979, 58, 115–130. [Google Scholar] [PubMed]
- Seynnes, O.R.; de Boer, M.; Narici, M.V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. 2007, 102, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Dankel, S.J.; Buckner, S.L.; Jessee, M.B.; Grant Mouser, J.; Mattocks, K.T.; Abe, T.; Loenneke, J.P. Correlations do not show cause and effect: Not even for changes in muscle size and strength. Sports Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hubal, M.J.; Gordish-Dressman, H.; Thompson, P.D.; Price, T.B.; Hoffman, E.P.; Angelopoulos, T.J.; Gordon, P.M.; Moyna, N.M.; Pescatello, L.S.; Visich, P.S.; et al. Variability in muscle size and strength gain after unilateral resistance training. Med. Sci. Sports Exerc. 2005, 37, 964–972. [Google Scholar] [PubMed]
- Ahtiainen, J.P.; Walker, S.; Peltonen, H.; Holviala, J.; Sillanpaa, E.; Karavirta, L.; Sallinen, J.; Mikkola, J.; Valkeinen, H.; Mero, A.; et al. Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages. Age Dordr. 2016, 38, 10. [Google Scholar] [CrossRef] [PubMed]
- Bamman, M.M.; Petrella, J.K.; Kim, J.S.; Mayhew, D.L.; Cross, J.M. Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J. Appl. Physiol. 2007, 102, 2232–2239. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, M.S.M.; Gentil, P.; Izquierdo, M.; Fisher, J.; Steele, J.; Raiol, R.A. There are no no-responders to low or high resistance training volumes among older women. Exp. Gerontol. 2017, 99, 18–26. [Google Scholar] [PubMed]
- Timmons, J.A. Variability in training-induced skeletal muscle adaptation. J. Appl. Physiol. 2011, 110, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A. Resistance training: The multifaceted side of exercise. Am. J. Physiol. Endocrinol. Metabol. 2012, 302, E387. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Bianco, A. Not all exercises are created equal. Am. J. Cardiol. 2012, 109. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Lundby, C. Refuting the myth of non-response to exercise training: ‘Non-responders’ do respond to higher dose of training. J. Physiol. 2017, 595, 3377–3387. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stapley, P.J.; McAndrew, D.J.; Walsh, J.A.; Kellis, E.; Mickel, C.; Paoli, A. The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Highlights on Recent Papers in Strength and Conditioning. J. Funct. Morphol. Kinesiol. 2017, 2, 36. https://doi.org/10.3390/jfmk2040036
Stapley PJ, McAndrew DJ, Walsh JA, Kellis E, Mickel C, Paoli A. The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Highlights on Recent Papers in Strength and Conditioning. Journal of Functional Morphology and Kinesiology. 2017; 2(4):36. https://doi.org/10.3390/jfmk2040036
Chicago/Turabian StyleStapley, Paul J., Darryl J. McAndrew, Joel A. Walsh, Eleftherios Kellis, Christoph Mickel, and Antonio Paoli. 2017. "The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Highlights on Recent Papers in Strength and Conditioning" Journal of Functional Morphology and Kinesiology 2, no. 4: 36. https://doi.org/10.3390/jfmk2040036
APA StyleStapley, P. J., McAndrew, D. J., Walsh, J. A., Kellis, E., Mickel, C., & Paoli, A. (2017). The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Highlights on Recent Papers in Strength and Conditioning. Journal of Functional Morphology and Kinesiology, 2(4), 36. https://doi.org/10.3390/jfmk2040036