The Role of Malnutrition during Pregnancy and Its Effects on Brain and Skeletal Muscle Postnatal Development
Abstract
:1. Introduction
2. Developmental Origins of Health and Disease (DOHaD)
3. Prenatal Development and Nutrients
3.1. Neurulation
3.2. Myogenesis, Adipogenesis, and Fibrogenesis during Pregnancy and in Early Postnatal Life
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
EPA | Eicosapentaenoic Acid |
CNS | Central Nervous System |
DHA | Docosahexaenoic Acid |
DTH | Delayed-Type Hypersensitivity |
BMI | Body Mass Index |
DOHaD | Developmental Origins of Health and Disease |
GH | Growth Hormone |
HIV | Human Immunodeficiency Virus |
IHD | Ischaemic Heart Disease |
IGF | Insulin-Like Growth Factor |
IL-2 | Interleukin-2c |
PRL | Prolactin |
NTDs | Neural Tube Defects |
NK | Natural Killer |
PMS | Premenstrual Syndrome |
TSH | Thyroid-Stimulating Hormone |
TRH | Thyroid-Releasing Hormone |
T3 | Triiodothyronine |
T4 | Tetraiodothyronine |
References
- Minkin, M.J. Embryonic development and pregnancy test sensitivity: The importance of earlier pregnancy detection. Womens Health 2009, 5, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Triunfo, S.; Lanzone, A. Impact of maternal under nutrition on obstetric outcomes. J. Endocrinol. Investig. 2015, 38, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Reusens, B.; Ozanne, S.E.; Remacle, C. Fetal determinants of type 2 dyabetes. Curr. Drug Targets 2007, 8, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Imbesi, R.; Castrogiovanni, P. Embryonic and post natal development in experimental tryptophan deprived rats. A preliminary study. J. Mol. Histol. 2008, 39, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Gabory, A.; Attig, L.; Junien, C. Developmental programming and epigenetics. Am. J. Clin. Nutr. 2011, 94, S1943–S1952. [Google Scholar] [CrossRef] [PubMed]
- Ford, S.P.; Long, N.M. Evidence for similar changes in offspring phenotype following either maternal undernutrition or overnutrition: Potential impact on fetal epigenetic mechanisms. Reprod. Fertil. Dev. 2011, 24, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.L.; Bailey, L.B.; Pietrzik, K.; Shane, B.; Holzgreve, W. Micronutrients and women of reproductive potential: Required dietary intake and consequences of dietary deficiency or excess. Part II—Vitamin D, vitamin A, iron, zinc, iodine, essential fatty acids. J. Matern. Fetal. Neonatal Med. 2011, 24, 1–24. [Google Scholar] [CrossRef] [PubMed]
- El Hajj, N.; Schneider, E.; Lehnen, H.; Haaf, T. Epigenetics and consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction 2014, 148, R111–R120. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.N.; Barker, D.J. The thrifty phenotype hypothesis. Br. Med. Bull. 2001, 16, 5–20. [Google Scholar] [CrossRef]
- Barker, D.J.; Winter, P.D.; Osmond, C.; Margetts, B.; Simmonds, S.J. Weight in infancy and death from ischaemic heart disease. Lancet. 1989, 2, 577–580. [Google Scholar] [CrossRef]
- Hales, C.N.; Barker, D.J.; Clark, P.M.; Cox, L.J.; Fall, C.; Osmond, C.; Winter, P.D. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991, 303, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Bourc’his, D.; Proudhon, C. Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development. Mol. Cell Endocrinol. 2008, 282, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.C. Nutritionally mediated programming of the developing immune system. Adv. Nutr. 2011, 2, 377–395. [Google Scholar] [CrossRef] [PubMed]
- Strzepa, A.; Szczepanik, M. Influence of natural gut flora on immune response. Postepy Hig Med. Dosw 2013, 67, 908–920. [Google Scholar] [CrossRef]
- MacDonald, T.T.; Pettersson, S. Bacterial regulation of intestinal immune responses. Inflamm. Bowel Dis. 2000, 6, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Madan, J.C.; Farzan, S.F.; Hibberd, P.L.; Karagas, M.R. Normal neonatal microbiome variation in relation to environmental factors, infection and allergy. Curr. Opin. Pediatr. 2012, 24, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Maki, R.G. Small is beautiful: Insulin-like growth factors and their role in growth, development, and cancer. J. Clin. Oncol. 2010, 28, 4985–4995. [Google Scholar] [CrossRef] [PubMed]
- Castrogiovanni, P.; Musumeci, G.; Trovato, F.M.; Avola, R.; Magro, G.; Imbesi, R. Effects of high-tryptophan diet on pre- and postnatal development in rats: A morphological study. Eur. J. Nutr. 2014, 53, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Warner, S.C.; Valdes, A.M. The Genetics of Osteoarthritis: A Review. J. Funct. Morphol. Kinesiol. 2016, 1, 140–153. [Google Scholar] [CrossRef]
- Anjos, T.; Altmäe, S.; Emmett, P.; Tiemeier, H.; Closa-Monasterolo, R.; Luque, V.; Wiseman, S.; Pérez-García, M.; Lattka, E.; Demmelmair, H.; et al. Nutrition and neurodevelopment in children: Focus on NUTRIMENTHE Project. Eur. J. Nutr. 2013, 52, 825–1842. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, E.B. Neuroimaging, a new tool for investigating the effects of early diet on cognitive and brain development. Front. Hum. Neurosci. 2013, 7, 445. [Google Scholar] [CrossRef] [PubMed]
- Czeizel, A.E.; Dudás, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 1992, 327, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 1991, 339, 131–137. [Google Scholar]
- Centers for Disease Control Prevention. Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. Morb. Mortal Wkly. Rep. 1992, 41, 1–8. [Google Scholar]
- McNulty, B.; McNulty, H.; Marshall, B.; Ward, M.; Molloy, A.M.; Scott, J.M.; Dornan, J.; Pentieva, K. Impact of continuing folic acid after the first trimester of pregnancy: findings of a randomized trial of Folic Acid Supplementation in the Second and Third Trimesters. Am. J. Clin. Nutr. 2013, 98, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Van de Rest, O.; van Hooijdonk, L.W.A.; Doets, E.; Schiepers, O.J.; Eilander, A.; de Groot, L.C. B Vitamins and n-3 fatty acids for brain development and function: review of human studies. Ann. Nutr. Metab. 2012, 60, 272–292. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Smith, S.M.; de Jager, C.A.; Whitbread, P.; Johnston, C.; Agacinski, G.; Oulhaj, A.; Bradley, K.M.; Jacoby, R.; Refsum, H. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS ONE 2010, 5, 12244. [Google Scholar] [CrossRef] [PubMed]
- Imbesi, R.; D’Agata, V.; Musumeci, G.; Castrogiovanni, P. Skeletal muscle: From development to function. Clin. Ter. 2014, 165, 47–56. [Google Scholar] [PubMed]
- Yoshimura, M.; Hagimoto, M.; Matsuura, T.; Ohkubo, J.; Ohno, M.; Maruyama, T.; Ishikura, T.; Hashimoto, H.; Kakuma, T.; Yoshimatsu, H.; et al. Effects of food deprivation on the hypothalamic feeding-regulating peptides gene expressions in serotonin depleted rats. J. Physiol. Sci. 2014, 64, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Whitaker-Azmitia, P.M. Behavioral and cellular consequences of increasing serotonergic activity during brain development: A role in autism? Int. J. Dev. Neurosci. 2005, 23, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Hranilovic, D.; Blažević, S.; Ivica, N.; Cicin-Sain, L.; Oreskovic, D. The effects of the perinatal treatment with 5-hydroxytryptophan or tranylcypromine on the peripheral and central serotonin homeostasis in adult rats. Neurochem. Int. 2011, 59, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Duan, C. Nutritional and developmental regulation of insulin-like growth factors in fish. J. Nutr. 1998, 128, S306–S314. [Google Scholar]
- Du, M.; Yan, X.; Tong, J.F.; Zhao, J.; Zhu, M.J. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol. Reprod. 2010, 82, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.J.; Ford, S.P.; Means, W.J.; Hess, B.W.; Nathanielsz, P.W.; Du, M. Maternal nutrient restriction affects properties of skeletal muscle in offspring. J. Physiol. 2006, 575, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.J.; Ford, S.P.; Nathanielsz, P.W.; Du, M. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol. Reprod. 2004, 71, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- Cabeço, L.C.; Budri, P.E.; Baroni, M.; Castan, E.P.; Carani, F.R.; de Souza, P.A.; Boer, P.A.; Matheus, S.M.; Dal-Pai-Silva, M. Maternal protein restriction induce skeletal muscle changes without altering the MRFs MyoD and myogenin expression in offspring. J. Mol. Histol. 2012, 43, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G.; Imbesi, R.; Trovato, F.M.; Szychlinska, M.A.; Aiello, F.C.; Buffa, P.; Castrogiovanni, P. Importance of serotonin (5-HT) and its precursor l-tryptophan for homeostasis and function of skeletal muscle in rats. A morphological and endocrinological study. Acta Histochem. 2015, 117, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Yang, Y.; Wen, Y.; Zhou, Y.; Fu, X.; Ding, S.; Liu, G.; Yao, K.; Wu, X.; Deng, Z.; Wu, G.; Yin, Y. Metabolomic analysis of amino acid and fat metabolism in rats with l-tryptophan supplementation. Amino Acids 2014, 46, 2681–2691. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G.; Loreto, C.; Trovato, F.M.; Giunta, S.; Imbesi, R.; Castrogiovanni, P. Serotonin (5HT) expression in rat pups treated with high-tryptophan diet during fetal and early postnatal development. Acta Histochem. 2014, 116, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G.; Trovato, F.M.; Avola, R.; Imbesi, R.; Castrogiovanni, P. Serotonin/growth hormone/insulin-like growth factors axis on pre- and post-natal development: a contemporary review. OA Anatomy 2013, 1, 6–12. [Google Scholar] [CrossRef]
- Innis, S.M. Dietary (n-3) fatty acids and brain development. J. Nutr. 2007, 137, 855–8599. [Google Scholar] [PubMed]
- Innis, S.M. Omega-3 Fatty acids and neural development to 2 years of age: do we know enough for dietary recommendations? J. Pediatr. Gastroenterol. Nutr. 2010, 50, 235. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.S.; Astwood, J.D.; Gaitoer, S.; Kuratko, C.N.; Nelson, E.B.; Salem, N., Jr. Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: A review of human studies. Prostaglandins Leukot. Essent. Fatty Acids 2010, 82, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Cansev, M.; Wurtman, R.J. Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils. Neuroscience 2007, 148, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Luchtman, D.W.; Song, C. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: Findings from animal and clinical studies. Neuropharmacology. 2013, 64, 550–565. [Google Scholar] [CrossRef] [PubMed]
- Curhan, G.C.; Willet, W.C.; Rimm, E.B.; Spiegelman, D.; Ascherio, A.L.; Stampfer, M.J. Birth weight and adult hypertension, diabetes mellitus and obesity in US men. Circulation 1996, 15, 3246–3250. [Google Scholar] [CrossRef]
- Mi, J.; Law, C.; Zhang, K.L.; Osmond, C.; Stein, C.; Barker, D. Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann. Intern. Med. 2000, 132, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Mayeur, S.; Wattez, J.S.; Lukaszewski, M.A.; Lecoutre, S.; Butruille, L.; Drougard, A.; Eberlé, D.; Bastide, B.; Laborie, C.; Storme, L.; et al. Apelin Controls Fetal and Neonatal Glucose Homeostasis and Is Altered by Maternal Undernutrition. Diabetes 2016, 65, 554–560. [Google Scholar] [CrossRef] [PubMed]
Folic Acid-Zinc | Reduction in Incidence of NTDs (Neural Tube Defects) and Neonatal Malformations; Reduction in Preterm Birth Incidence; Reduction in Low Birth Weight Incidence |
---|---|
Calcium | Reduction in incidence of PMS (premenstrual syndrome); Improved bone mineral composition in the newborn; Reduction in gestosis incidence |
Vitamin C-Vitamin E | Reduction in gestosis incidence |
Vitamin A-β-Carotene | Reduction in maternal mortality |
Polyvitamins | Reduction in foetal mortality; Higher levels of immune cells in HIV (human immunodeficiency virus)-positive pregnant women; Reduction in incidence of NTDs and neonatal malformations; Reduction in preterm birth incidence; Reduction in low birth weight incidence |
Vitamin C | Better Response to DTH (Delayed-Type Hypersensitivity) Skin-Test |
---|---|
Vitamin E | Proliferation of immune cells; Reduction in levels of IGF-2 (insulin-like growth factors); Improvement in immune response to hepatitis B Vaccination; Increase in IL-2 levels; Better response to DTH skin-test |
β-Carotene | Better NK (natural killer) cells function; Stop to UV-induced immunosuppression |
Polyvitamins | Antibody levels increase in influenza vaccination; Reduction in infectious disease morbidity; Better response to DTH skin-test; Control in T-helper cells number |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castrogiovanni, P.; Imbesi, R. The Role of Malnutrition during Pregnancy and Its Effects on Brain and Skeletal Muscle Postnatal Development. J. Funct. Morphol. Kinesiol. 2017, 2, 30. https://doi.org/10.3390/jfmk2030030
Castrogiovanni P, Imbesi R. The Role of Malnutrition during Pregnancy and Its Effects on Brain and Skeletal Muscle Postnatal Development. Journal of Functional Morphology and Kinesiology. 2017; 2(3):30. https://doi.org/10.3390/jfmk2030030
Chicago/Turabian StyleCastrogiovanni, Paola, and Rosa Imbesi. 2017. "The Role of Malnutrition during Pregnancy and Its Effects on Brain and Skeletal Muscle Postnatal Development" Journal of Functional Morphology and Kinesiology 2, no. 3: 30. https://doi.org/10.3390/jfmk2030030
APA StyleCastrogiovanni, P., & Imbesi, R. (2017). The Role of Malnutrition during Pregnancy and Its Effects on Brain and Skeletal Muscle Postnatal Development. Journal of Functional Morphology and Kinesiology, 2(3), 30. https://doi.org/10.3390/jfmk2030030