Is the FIFA 11+ Warm-Up Effective for Inducing Acute Knee Adaptations in Recreational Soccer Players?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.3.1. Warm-Up FIFA 11+
2.3.2. Mechanical Properties
2.3.3. Muscular Oxygen Saturation (SmO2)
2.3.4. Surface Electromyography (sEMG)
2.3.5. Maximum Voluntary Force (MVC) and Force Development Ratio (RFD)
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SmO2 | Muscular oxygen saturation |
NIRS | Near-infrared spectroscopy |
HSI | Hamstring strain injuries |
DOMS | Delayed onset muscle soreness |
NHE | Nordic Hamstring Exercise |
RFD | Force development ratio |
MF | Maximal force |
IMTP | Impulse in the Isometric Mid-Thigh Pull |
PAP | Post-activation potentiation |
MVC | Maximum voluntary force |
sEMG | Surface electromyography |
EMG | Electromyography |
FIFA | Fédération Internationale de Football Association |
SSC | Stretch-shortening cycle |
References
- Pedrinelli, A.; Cunha Filho, G.A.R.d.; Thiele, E.S.; Kullak, O.P. Estudo Epidemiológico Das Lesões No Futebol Profissional Durante a Copa América de 2011, Argentina. Rev. Bras. Ortop. 2013, 48, 131–136. [Google Scholar] [CrossRef]
- Kerr, Z.Y.; Wilkerson, G.B.; Caswell, S.V.; Currie, D.W.; Pierpoint, L.A.; Wasserman, E.B.; Knowles, S.B.; Dompier, T.P.; Comstock, R.D.; Marshall, S.W. The First Decade of Web-Based Sports Injury Surveillance: Descriptive Epidemiology of Injuries in United States High School Football (2005–2006 Through 2013–2014) and National Collegiate Athletic Association Football (2004–2005 Through 2013–2014). J. Athl. Train. 2018, 53, 738–751. [Google Scholar] [CrossRef]
- Dolci, F.; Hart, N.H.; Kilding, A.E.; Chivers, P.; Piggott, B.; Spiteri, T. Physical and Energetic Demand of Soccer: A Brief Review. Strength Cond. J. 2020, 42, 70–77. [Google Scholar] [CrossRef]
- Jones, A.; Jones, G.; Greig, N.; Bower, P.; Brown, J.; Hind, K.; Francis, P. Epidemiology of Injury in English Professional Football Players: A Cohort Study. Phys. Ther. Sport 2019, 35, 18–22. [Google Scholar] [CrossRef]
- Gould, H.P.; Lostetter, S.J.; Samuelson, E.R.; Guyton, G.P. Lower Extremity Injury Rates on Artificial Turf Versus Natural Grass Playing Surfaces: A Systematic Review. Am. J. Sports Med. 2023, 51, 1615–1621. [Google Scholar] [CrossRef]
- Robles-Palazón, F.J.; López-Valenciano, A.; De Ste Croix, M.; Oliver, J.L.; García-Gómez, A.; Sainz de Baranda, P.; Ayala, F. Epidemiology of Injuries in Male and Female Youth Football Players: A Systematic Review and Meta-Analysis. J. Sport Health Sci. 2022, 11, 681–695. [Google Scholar] [CrossRef]
- Arliani, G.G.; Astur, D.C.; Yamada, R.K.F.; Yamada, A.F.; Da Rocha Corrêa Fernandes, A.; Ejnisman, B.; De Castro Pochini, A.; Cohen, M. Professional Football Can Be Considered a Healthy Sport? Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3907–3911. [Google Scholar] [CrossRef]
- Arliani, G.G.; Lara, P.S.; Astur, D.C.; Cohen, M.; Gonҫalves, J.P.P.; Ferretti, M. Impact of Sports on Health of Former Professional Soccer Players in Brazil. Acta Ortop. Bras. 2014, 22, 188–190. [Google Scholar] [CrossRef]
- Teixeira, E.; Silva, C.; Romero, F.; Miguel, M.; Vicente, A. Severe Injuries of Former Portuguese Football Players: A Post-Career Burden? Sports 2025, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Krajnc, Z.; Vogrin, M.; Recnik, G.; Crnjac, A.; Drobnic, M.; Antolic, V. Increased Risk of Knee Injuries and Osteoarthritis in the Non-Dominant Leg of Former Professional Football Players. Wien. Klin. Wochenschr. 2010, 122, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Neyret, P.; Donell, S.T.; DeJour, D.; DeJour, H. Partial Meniscectomy and Anterior Cruciate Ligament Rupture in Soccer Players. A Study with a Minimum 20-Year Followup. Am. J. Sports Med. 1993, 21, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Mohtadi, N.G.; Chan, D.S. Return to Sport-Specific Performance After Primary Anterior Cruciate Ligament Reconstruction: A Systematic Review. Am. J. Sports Med. 2018, 46, 3307–3316. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Jabalera, J.; Fílter-Ruger, A.; Dos’Santos, T.; Afonso, J.; Della Villa, F.; Morente-Sánchez, J.; Soto-Hermoso, V.M.; Requena, B. Exercise-Based Training Strategies to Reduce the Incidence or Mitigate the Risk Factors of Anterior Cruciate Ligament Injury in Adult Football (Soccer) Players: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 13551. [Google Scholar] [CrossRef]
- Krutsch, W.; Lehmann, J.; Jansen, P.; Angele, P.; Fellner, B.; Achenbach, L.; Krutsch, V.; Nerlich, M.; Alt, V.; Loose, O. Prevention of Severe Knee Injuries in Men’s Elite Football by Implementing Specific Training Modules. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 519–527. [Google Scholar] [CrossRef]
- Serner, A.; Chamari, K.; Hassanmirzaei, B.; Moreira, F.; Bahr, R.; Massey, A.; Grimm, K.; Clarsen, B.; Tabben, M. Time-Loss Injuries and Illnesses at the FIFA World Cup Qatar 2022. Sci. Med. Footb. 2024, 1–8. [Google Scholar] [CrossRef]
- García-Luna, M.A.; Cortell-Tormo, J.M.; García-Jaén, M.; Ortega-Navarro, M.; Tortosa-Martínez, J. Acute Effects of ACL Injury-Prevention Warm-up and Soccer-Specific Fatigue Protocol on Dynamic Knee Valgus in Youth Male Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 5608. [Google Scholar] [CrossRef] [PubMed]
- Hawkinson, L.E.; Yates, L.; Minnig, M.C.; Register-Mihalik, J.K.; Golightly, Y.M.; Padua, D.A. Understanding Youth Sport Coaches’ Perceptions of Evidence-Based Injury-Prevention Training Programs: A Systematic Literature Review. J. Athl. Train. 2022, 57, 877–893. [Google Scholar] [CrossRef]
- Hammami, A.; Zois, J.; Slimani, M.; Russel, M.; Bouhlel, E. The Efficacy and Characteristics of Warm-up and Re-Warm-up Practices in Soccer Players: A Systematic Review. J. Sports Med. Phys. Fit. 2018, 58, 135–149. [Google Scholar] [CrossRef]
- Bishop, D. Warm up II: Performance Changes Following Active Warm up and How to Structure the Warm Up. Sports Med. 2003, 33, 483–498. [Google Scholar] [CrossRef]
- Crossley, K.M.; Patterson, B.E.; Culvenor, A.G.; Bruder, A.M.; Mosler, A.B.; Mentiplay, B.F. Making Football Safer for Women: A Systematic Review and Meta-Analysis of Injury Prevention Programmes in 11 773 Female Football (Soccer) Players. Br. J. Sports Med. 2020, 54, 1089–1098. [Google Scholar] [CrossRef]
- Obërtinca, R.; Meha, R.; Hoxha, I.; Shabani, B.; Meyer, T.; der Fünten, K.A. Efficacy of a New Injury Prevention Programme (FUNBALL) in Young Male Football (Soccer) Players: A Cluster-Randomised Controlled Trial. Br. J. Sports Med. 2024, 58, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.K.; Clemente, F.M.; Moran, J.; Garcia-Pinillos, F.; Scanlan, A.T.; Ramirez-Campillo, R. Warm-up Optimization in Amateur Male Soccer Players: A Comparison of Small-Sided Games and Traditional Warm-up Routines on Physical Fitness Qualities. Biol. Sport 2023, 40, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Martinez, J.; Ramirez-Campillo, R.; Vera-Assaoka, T.; Castillo-Cerda, M.; Carter-Truillier, B.; Herrera-Valenzuela, T.; López-Fuenzalida, A.; Nobari, H.; Valdés-Badilla, P. Warm-up Stretching Exercises and Physical Performance of Youth Soccer Players. Front. Physiol. 2023, 14, 1127669. [Google Scholar] [CrossRef]
- Pleša, J.; Ujaković, F.; Ribič, A.; Bishop, C.; Šarabon, N.; Kozinc, Ž. Effectiveness of an Individualized Training Based on Dynamic Strength Index on Sprinting, Jumping and Change of Direction Performance in Basketball Players: A Randomized Controlled Trial. J. Sports Sci. Med. 2024, 23, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, M.; Qu, K.; Mao, X.; Lu, A.; Sheng, Y.; Fong, D.T.P.; Wang, D. Does Lower Extremity Stiffness Influence Change of Direction Speed in Badminton Athletes after Dynamic Loaded Warm-Up? iScience 2024, 27, 110543. [Google Scholar] [CrossRef]
- Cristi-Sánchez, I.; Danes-Daetz, C.; Neira, A.; Ferrada, W.; Yáñez Díaz, R.; Silvestre Aguirre, R. Patellar and Achilles Tendon Stiffness in Elite Soccer Players Assessed Using Myotonometric Measurements. Sports Health 2019, 11, 157–162. [Google Scholar] [CrossRef]
- Chen, G.; Wu, J.; Chen, G.; Lu, Y.; Ren, W.; Xu, W.; Xu, X.; Wu, Z.; Guan, Y.; Zheng, Y.; et al. Reliability of a Portable Device for Quantifying Tone and Stiffness of Quadriceps Femoris and Patellar Tendon at Different Knee Flexion Angles. PLoS ONE 2019, 14, e0220521. [Google Scholar] [CrossRef]
- Barengo, N.C.; Meneses-Echávez, J.F.; Ramírez-Vélez, R.; Cohen, D.D.; Tovar, G.; Enrique Correa Bautista, J. The Impact of the Fifa 11+ Training Program on Injury Prevention in Football Players: A Systematic Review. Int. J. Environ. Res. Public Health 2014, 11, 11986–12000. [Google Scholar] [CrossRef]
- Althomali, O.W.; Ibrahim, A.A.; Algharbi, A.F.; Alshammari, S.S.; Alajlan, S.N.; Albaqawi, J.A.; Alshammari, A.F.; Sheeha, B.B.; Hussein, H.M. The FIFA 11+ Injury Prevention Program Reduces the Incidence of Lower Extremity Injuries in Football Players: A Systematic Review and Meta-Analysis. J. Sports Med. Phys. Fit. 2025, 65, 117–124. [Google Scholar] [CrossRef]
- Ayala, F.; Calderón-López, A.; Delgado-Gosálbez, J.C.; Parra-Sánchez, S.; Pomares-Noguera, C.; Hernández-Sánchez, S.; López-Valenciano, A.; De Ste Croix, M. Acute Effects of Three Neuromuscular Warm-up Strategies on Several Physical Performance Measures in Football Players. PLoS ONE 2017, 12, e0169660. [Google Scholar] [CrossRef]
- Arundale, A.J.H.; Silvers-Granelli, H.J.; Marmon, A.; Zarzycki, R.; Dix, C.; Snyder-Mackler, L. Changes in Biomechanical Knee Injury Risk Factors across Two Collegiate Soccer Seasons Using the 11+ Prevention Program. Scand. J. Med. Sci. Sports 2018, 28, 2592–2603. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Rodrigues, J.M.; Monteiro, P.; Rodrigues, M.; Costa, R.; Oliveira, J.; Ribeiro, F. Effects of the FIFA 11+ on Ankle Evertors Latency Time and Knee Muscle Strength in Amateur Futsal Players. Eur. J. Sport Sci. 2020, 20, 24–34. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; Ruiz-Navarro, J.J.; Arellano, R.; Marko, Đ.; Stojanović, N. Is Warm-Up Preservation Modulated by Biological Maturation and Sex? Effects on Lower Limbs Performance. Scand. J. Med. Sci. Sports 2024, 34, e14747. [Google Scholar] [CrossRef] [PubMed]
- Pardos-Mainer, E.; Casajús, J.A.; Gonzalo-Skok, O. Adolescent Female Soccer Players’ Soccer-Specific Warm-up Effects on Performance and Inter-Limb Asymmetries. Biol. Sport 2019, 36, 199–207. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Colomar, J.; Baiget, E.; Corbi, F. Influence of Strength, Power, and Muscular Stiffness on Stroke Velocity in Junior Tennis Players. Front. Physiol. 2020, 11, 508996. [Google Scholar] [CrossRef]
- Kong, P.W.; Chua, Y.H.; Kawabata, M.; Burns, S.F.; Cai, C. Effect of Post-Exercise Massage on Passive Muscle Stiffness Measured Using Myotonometry–A Double-Blind Study. J. Sports Sci. Med. 2018, 17, 599–606. [Google Scholar] [PubMed]
- Gervasi, M.; Benelli, P.; Venerandi, R.; Fernández-Peña, E. Relationship between Muscle-Tendon Stiffness and Drop Jump Performance in Young Male Basketball Players during Developmental Stages. Int. J. Environ. Res. Public Health 2022, 19, 17017. [Google Scholar] [CrossRef]
- Colomar, J.; Corbi, F.; Baiget, E. Alterations in Mechanical Muscle Characteristics and Postural Control Induced by Tennis Match-Play in Young Players. PeerJ 2021, 9, e11445. [Google Scholar] [CrossRef]
- Gandia-Soriano, A.; Salas-Montoro, J.A.; Javaloyes, A.; Lorente-Casaus, C.; Zabala, M.; Priego-Quesada, J.I.; Mateo March, M. Validity and Reliability of Two Near-Infrared Spectroscopy Devices to Measure Resting Hemoglobin in Elite Cyclists. Int. J. Sports Med. 2022, 43, 875–880. [Google Scholar] [CrossRef]
- Molina-Molina, A.; Ruiz-Malagón, E.J.; Carrillo-Pérez, F.; Roche-Seruendo, L.E.; Damas, M.; Banos, O.; García-Pinillos, F. Validation of MDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment. Front. Physiol. 2020, 11, 606287. [Google Scholar] [CrossRef]
- Colomar, J.; Corbi, F.; Baiget, E. Force-Time Curve Variable Outcomes Following a Simulated Tennis Match in Junior Players. J. Sports Sci. Med. 2022, 21, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.A.; Tran, A.A.; Gatewood, C.T.; Shultz, R.; Silder, A.; Delp, S.L.; Dragoo, J.L. Biomechanical Effects of an Injury Prevention Program in Preadolescent Female Soccer Athletes. Am. J. Sports Med. 2017, 45, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Dunsky, A.; Barzilay, I.; Fox, O. Effect of a Specialized Injury Prevention Program on Static Balance, Dynamic Balance and Kicking Accuracy of Young Soccer Players. World J. Orthop. 2017, 8, 317–321. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, J. Effect of FIFA 11+ Training Program on Soccer-Specific Physical Performance and Functional Movement in Collegiate Male Soccer Players: A Randomized Controlled Trial. Exerc. Sci. 2019, 28, 141–149. [Google Scholar] [CrossRef]
- Asgari, M.; Nazari, B.; Bizzini, M.; Jaitner, T. Effects of the FIFA 11+ Program on Performance, Biomechanical Measures, and Physiological Responses: A Systematic Review. J. Sport Health Sci. 2022, 3, 183–190. [Google Scholar] [CrossRef]
- Mohr, M.; Krustrup, P.; Nybo, L.; Nielsen, J.J.; Bangsbo, J. Muscle Temperature and Sprint Performance during Soccer Matches--Beneficial Effect of Re-Warm-up at Half-Time. Scand. J. Med. Sci. Sports 2004, 14, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Hammami, A.; Selmi, W.; Mahmoudi, A.; Negra, Y.; Chaouachi, A.; Behm, D.G.; Granacher, U.; Hammami, R. Effects of Neuromuscular versus Stretching Training Performed during the Warm-up on Measures of Physical Fitness and Mental Well-Being in Highly-Trained Pubertal Male Soccer Players. PLoS ONE 2025, 20, e0318318. [Google Scholar] [CrossRef]
- Kojima, S.; Morishita, S.; Hotta, K.; Qin, W.; Usui, N.; Tsubaki, A. Temporal Changes in Cortical Oxygenation in the Motor-Related Areas and Bilateral Prefrontal Cortex Based on Exercise Intensity and Respiratory Metabolism during Incremental Exercise in Male Subjects: A near-Infrared Spectroscopy Study. Front. Physiol. 2022, 13, 794473. [Google Scholar] [CrossRef]
- Racinais, S.; Buchheit, M.; Girard, O. Breakpoints in Ventilation, Cerebral and Muscle Oxygenation, and Muscle Activity during an Incremental Cycling Exercise. Front. Physiol. 2014, 5, 142. [Google Scholar] [CrossRef]
- Barnes, J.N.; Charkoudian, N. Integrative Cardiovascular Control in Women: Regulation of Blood Pressure, Body Temperature, and Cerebrovascular Responsiveness. FASEB J. 2021, 35, e21143. [Google Scholar] [CrossRef]
- Yang, W.-C.; Wang, S.-Y.; Chiu, C.-H.; Ye, X.; Weng, M.-C.; Jhang, J.-C.; Chen, C.-H. Effect of Different Resistance Increments during Warm-up on the Snatch Performance of Male Weightlifters. Heliyon 2024, 10, e34827. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased Rate of Force Development and Neural Drive of Human Skeletal Muscle Following Resistance Training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Magal, M.; Amitay, M.; Hoffman, J.R. A Comparison Between the Traditional and Novel Isometric Mid-Thigh Methods and The Relationship to Countermovement Jump Performance. Int. J. Exerc. Sci. 2025, 18, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Jones, P.A.; Dos’santos, T. Countermovement Jump Force–Time Curve Analysis between Strength-Matched Male and Female Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 3352. [Google Scholar] [CrossRef]
- Della Villa, F.; Massa, B.; Bortolami, A.; Nanni, G.; Olmo, J.; Buckthorpe, M. Injury Mechanisms and Situational Patterns of Severe Lower Limb Muscle Injuries in Male Professional Football (Soccer) Players: A Systematic Video Analysis Study on 103 Cases. Br. J. Sports Med. 2023, 57, 1550–1558. [Google Scholar] [CrossRef]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Injury Incidence and Injury Patterns in Professional Football: The UEFA Injury Study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Siff, M.; Verkhoshansky, Y. Supertraining, 2nd ed.; Editorial Paidotribo: Badalona, Spain, 2004; ISBN 978-84-8019-465-5. [Google Scholar]
- Bourne, M.N.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of Exercise Selection on Hamstring Muscle Activation. Br. J. Sports Med. 2017, 51, 1021–1028. [Google Scholar] [CrossRef]
- Kubo, K.; Kanehisa, H.; Azuma, K.; Ishizu, M.; Kuno, S.-Y.; Okada, M.; Fukunaga, T. Muscle Architectural Characteristics in Young and Elderly Men and Women. Int. J. Sports Med. 2003, 24, 125–130. [Google Scholar] [CrossRef]
- Hirose, N.; Tsuruike, M.; Higashihara, A. Biceps Femoris Muscle Is Activated by Performing Nordic Hamstring Exercise at a Shallow Knee Flexion Angle. J. Sports Sci. Med. 2021, 20, 275–283. [Google Scholar] [CrossRef]
- Cuthbert, M.; Ripley, N.; McMahon, J.J.; Evans, M.; Haff, G.G.; Comfort, P. The Effect of Nordic Hamstring Exercise Intervention Volume on Eccentric Strength and Muscle Architecture Adaptations: A Systematic Review and Meta-Analyses. Sports Med. 2020, 50, 83–99. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, R.; Laterza, F.; Sannicandro, I.; Masucci, M.; Bovenzi, A.; Manzi, V. Injury Prevention in Professional Soccer Players: Can Re-Warmup Training Be Organized in the Post-Warmup and Half-Time during a Soccer Game in a Short Time? J. Sports Med. Phys. Fit. 2024, 64, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; McCall, A.; Van Smeden, M. Why Methods Matter in a Meta-Analysis: A Reappraisal Showed Inconclusive Injury Preventive Effect of Nordic Hamstring Exercise. J. Clin. Epidemiol. 2021, 140, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Amundsen, R.; Heimland, J.S.; Thorarinsdottir, S.; Møller, M.; Bahr, R. Effects of High and Low Training Volume with the Nordic Hamstring Exercise on Hamstring Strength, Jump Height, and Sprint Performance in Female Football Players: A Randomised Trial. Transl. Sports Med. 2022, 2022, 7133928. [Google Scholar] [CrossRef]
- Nguyen, A.P.; Bosquet, L.; Belaoued, R.; Detrembleur, C.; Mahaudens, P. Impact of Achilles Tendon and Ankle Plantar Flexor Stiffness on the Net Metabolic Cost of Running. Int. J. Sports Physiol. Perform. 2025, 20, 653–658. [Google Scholar] [CrossRef]
- Paravlic, A.H.; Bakalár, P.; Puš, K.; Pišot, S.; Kalc, M.; Teraž, K.; Šlosar, L.; Peskar, M.; Marušič, U.; Šimunič, B. The Effectiveness of Neuromuscular Training Warm-up Program for Injury Prevention in Adolescent Male Basketball Players. J. Sports Sci. 2024, 42, 2083–2092. [Google Scholar] [CrossRef]
- Mason, L.; Kirkland, A.; Steele, J.; Wright, J. The Relationship between Isometric Mid-Thigh Pull Variables and Athletic Performance Measures: Empirical Study of English Professional Soccer Players and Meta-Analysis of Extant Literature. J. Sports Med. Phys. Fit. 2021, 61, 645–655. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; McMahon, J.J.; Jones, P.A. Relationships between Isometric Force-Time Characteristics and Dynamic Performance. Sports 2017, 5, 68. [Google Scholar] [CrossRef]
- Chalitsios, C.; Nikodelis, T.; Mougios, V. Mechanical Deviations in Stride Characteristics During Running in the Severe Intensity Domain Are Associated with a Decline in Muscle Oxygenation. Scand. J. Med. Sci. Sports 2024, 34, e14709. [Google Scholar] [CrossRef]
- Saltin, B.; Gagge, A.P.; Stolwijk, J.A. Muscle Temperature during Submaximal Exercise in Man. J. Appl. Physiol. 1968, 25, 679–688. [Google Scholar] [CrossRef]
- McCutcheon, L.J.; Geor, R.J.; Hinchcliff, K.W. Effects of Prior Exercise on Muscle Metabolism during Sprint Exercise in Horses. J. Appl. Physiol. 1999, 87, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Ramírez, M.; Moya-Gallardo, E.; Araya-Román, F.; Riquelme-Sánchez, S.; Rodriguez-García, G.; Reid, W.D.; Viscor, G.; Araneda, O.F.; Gabrielli, L.; Contreras-Briceño, F. Sex-Differences in the Oxygenation Levels of Intercostal and Vastus Lateralis Muscles During Incremental Exercise. Front. Physiol. 2021, 12, 738063. [Google Scholar] [CrossRef]
- Sendra-Pérez, C.; Priego-Quesada, J.I.; Salvador-Palmer, R.; Murias, J.M.; Encarnacion-Martinez, A. Sex-Related Differences in Profiles of Muscle Oxygen Saturation of Different Muscles in Trained Cyclists during Graded Cycling Exercise. J. Appl. Physiol. 2023, 135, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Levenson, J.; Pessana, F.; Gariepy, J.; Armentano, R.; Simon, A. Gender Differences in Wall Shear-Mediated Brachial Artery Vasoconstriction and Vasodilation. J. Am. Coll. Cardiol. 2001, 38, 1668–1674. [Google Scholar] [CrossRef]
- Lanferdini, F.J.; Viera, H.L.S.; Gidiel-Machado, L.; Leite-Nunes, T.D.; Soldatelli, I.M.; Porporatti, L.B.; Matheus, S.C.; dos Santos, D.L.; Saccol, M.F.; Royes, L.F.F. Vastus Lateralis Muscle Architecture, Quality, and Stiffness Are Determinants of Maximal Performance in Athletes? J. Biomech. 2025, 180, 112491. [Google Scholar] [CrossRef] [PubMed]
- Baena-Raya, A.; Díez-Fernández, D.M.; García-Ramos, A.; Martinez-Tellez, B.; Boullosa, D.; Soriano-Maldonado, A.; Rodríguez-Pérez, M.A. Acute Mechanical and Skin Temperature Responses to Different Interrepetition Rest Intervals During Full-Squat Exercise. Int. J. Sports Physiol. Perform. 2023, 18, 674–681. [Google Scholar] [CrossRef]
- Martínez-Fortuny, N.; Alonso-Calvete, A.; Da Cuña-Carrera, I.; Abalo-Núñez, R. Menstrual Cycle and Sport Injuries: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 3264. [Google Scholar] [CrossRef]
- Lago-Fuentes, C.; Padrón-Cabo, A.; Fernández-Villarino, M.; Mecías-Calvo, M.; Muñoz-Pérez, I.; García-Pinillos, F.; Rey, E. Follicular Phase of Menstrual Cycle Is Related to Higher Tendency to Suffer from Severe Injuries among Elite Female Futsal Players. Phys. Ther. Sport 2021, 52, 90–96. [Google Scholar] [CrossRef]
- Pamukoff, D.N.; Bell, S.E.; Ryan, E.D.; Blackburn, J.T. The Myotonometer: Not a Valid Measurement Tool for Active Hamstring Musculotendinous Stiffness. J. Sport Rehabil. 2016, 25, 111–116. [Google Scholar] [CrossRef]
- Facer-Childs, E.; Brandstaetter, R. The Impact of Circadian Phenotype and Time since Awakening on Diurnal Performance in Athletes. Curr. Biol. 2015, 25, 518–522. [Google Scholar] [CrossRef]
Sex Groups | Total (n = 45) | ||
---|---|---|---|
Male (n = 24) | Female (n = 21) | ||
Chronological Age (years) | 22.71 ± 2.85 | 21.86 ± 0.96 | 22.31 ± 2.20 |
Height (cm) | 177.33 ± 6.01 * | 164.49 ± 6.14 | 171.34 ± 8.83 |
BM (kg) | 73.70 ± 7.44 ** | 58.28 ± 7.96 | 66.50 ± 10.88 |
BMI (kg·m−2) | 23.45 ± 2.32 ** | 21.44 ± 1.81 | 22.52 ± 2.30 |
Gender Groups | Two-Way ANOVA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Women (n = 21) | Men (n = 24) | Time Effect | Time X Gender Effect | |||||||
Pre | Post | Δ (%) | ES | Pre | Post | Δ (%) | ES | p-Value | ||
SmO2 | ||||||||||
Mean (%) | 52.7 ± 8.3 | 57.2 ± 10.5 § | 8.5 | 0.38 | 60.0 ± 6.8 ** | 68.6 ± 7.2 §ǂ | 14.4 | 1.02 | <0.001 | 0.176 |
IMTP | ||||||||||
MAXFOR (N·s−1) | 743.6 ± 94.5 | 741.4 ± 103.2 | −0.3 | −0.09 | 1126.6 ± 214.9 | 1112.1 ± 192.2 | −1.3 | −0.31 | 0.156 | 0.293 |
RFD (N·s−1) | 2906.3 ± 1067.8 | 2991.0 ± 1158.9 | 2.9 | 0.12 | 3341.7 ± 1608.5 | 3176.0 ± 985.2 | −5.2 | −0.10 | 0.835 | 0.521 |
IMP (N·s−1) | 267.0 ± 67.9 | 256.6 ± 60.1 | −4.0 | −0.24 | 378.9 ± 79.1 | 361.4 ± 103.1 | −4.8 | −0.27 | 0.1 | 0.667 |
EMG | ||||||||||
Biceps Femoris | ||||||||||
RMS (µV) | 45.2 ± 19.6 | 52.5 ± 24.4 | 16.4 | 0.73 | 53.5 ± 25.2 | 52.1 ± 22.1 | −2.7 | −0.09 | 0.127 | 0.028 |
MCV (µV) | 175.3 ± 123.0 | 179.9 ± 140.4 | 2.6 | 0.03 | 183.0 ± 87.3 | 132.7 ± 62.2 | −37.9 | −0.64 | 0.276 | 0.192 |
Rectus Femoris | ||||||||||
RMS (µV) | 15.2 ± 11.1 | 15.0 ± 8.8 | −0.9 | −0.02 | 11.5 ± 6.6 | 12.8 ± 9.0 | 11.5 | 0.14 | 0.657 | 0.588 |
MCV (µV) | 58.8 ± 42.5 | 59.9 ± 31.8 | 1.9 | 0.03 | 69.3 ± 39.9 | 57.3 ± 34.5 | −21.0 | −0.22 | 0.441 | 0.356 |
MUSCULAR PROPERTIES | ||||||||||
Biceps Femoris | ||||||||||
Frequency (Hz) | 14.4 ± 1.2 | 14.5 ± 1.3 | 1.0 | 0.17 | 16.0 ± 1.6 | 15.9 ± 1.8 | −0.7 | −0.10 | 0.912 | 0.413 |
Stiffness (N/m) | 242.1 ± 30.2 | 248.7 ± 29.8 | 2.7 | 0.30 | 295.3 ± 39.5 | 292.9 ± 46.8 | −0.8 | −0.07 | 0.646 | 0.323 |
Decrement (n.u.) | 1.10 ± 0.1 | 1.1 ± 0.2 | −1.2 | −0.15 | 1.2 ± 0.2 | 1.1 ± 0.1 | −2.8 | −0.23 | 0.201 | 0.623 |
Relaxation (ms) | 21.7 ± 2.6 | 21.3 ± 2.1 | −1.7 | −0.22 | 18.0 ± 2.3 | 18.4 ± 2.3 | 2.2 | 0.21 | 0.976 | 0.161 |
Rectus Femoris | ||||||||||
Frequency (Hz) | 14.4 ± 1.3 | 14.4 ± 1.2 | −0.2 | −0.03 | 16.0 ± 1.0 | 15.9 ± 1.4 | 1.1 | −0.13 | 0.559 | 0.691 |
Stiffness (N/m) | 259.9 ± 37.0 | 255.2 ± 34.9 | −1.8 | −0.19 | 294.7 ± 26.3 | 292.2 ± 38.6 | −0.9 | −0.09 | 0.386 | 0.792 |
Decrement (n.u.) | 1.5 ± 0.2 | 1.4 ± 0.2 | −2.1 | −0.16 | 1.5 ± 0.3 | 1.4 ± 0.3 | −5.9 | −0.32 | 0.105 | 0.452 |
Relaxation (ms) | 21.8 ± 2.7 | 21.9 ± 2.2 | 0.5 | 0.06 | 18.7 ± 1.5 | 19.1 ± 2.3 | 1.7 | 0.16 | 0.466 | 0.708 |
Patellar Tendon | ||||||||||
Frequency (Hz) | 19.0 ± 2.2 | 18.7 ± 2.9 | −1.5 | −0.14 | 22.6 ± 5.5 | 22.4 ± 5.4 | −0.9 | −0.10 | 0.431 | 0.876 |
Stiffness (N/m) | 475.5 ± 116.8 | 444.3 ± 138.1 | −7.0 | −0.32 | 596.7 ± 212.5 | 582.9 ± 194.6 | −2.4 | −0.17 | 0.101 | 0.52 |
Decrement (n.u.) | 1.2 ± 0.2 | 1.2 ± 0.2 | −0.3 | −0.03 | 1.2 ± 0.1 | 1.2 ± 0.1 | −3.5 | −0.43 | 0.21 | 0.297 |
Relaxation (ms) | 12.2 ± 2.6 | 13.0 ± 2.9 | 6.5 | 0.38 | 10.7 ± 3.3 | 10.5 ± 3.4 | −1.4 | −0.11 | 0.228 | 0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caudet, P.; Baiget, E.; Batalla, A.; Colomar, J.; Crespo, M.; Martínez-Gallego, R.; Corbi, F. Is the FIFA 11+ Warm-Up Effective for Inducing Acute Knee Adaptations in Recreational Soccer Players? J. Funct. Morphol. Kinesiol. 2025, 10, 216. https://doi.org/10.3390/jfmk10020216
Caudet P, Baiget E, Batalla A, Colomar J, Crespo M, Martínez-Gallego R, Corbi F. Is the FIFA 11+ Warm-Up Effective for Inducing Acute Knee Adaptations in Recreational Soccer Players? Journal of Functional Morphology and Kinesiology. 2025; 10(2):216. https://doi.org/10.3390/jfmk10020216
Chicago/Turabian StyleCaudet, Patricia, Ernest Baiget, Abraham Batalla, Joshua Colomar, Miguel Crespo, Rafael Martínez-Gallego, and Francisco Corbi. 2025. "Is the FIFA 11+ Warm-Up Effective for Inducing Acute Knee Adaptations in Recreational Soccer Players?" Journal of Functional Morphology and Kinesiology 10, no. 2: 216. https://doi.org/10.3390/jfmk10020216
APA StyleCaudet, P., Baiget, E., Batalla, A., Colomar, J., Crespo, M., Martínez-Gallego, R., & Corbi, F. (2025). Is the FIFA 11+ Warm-Up Effective for Inducing Acute Knee Adaptations in Recreational Soccer Players? Journal of Functional Morphology and Kinesiology, 10(2), 216. https://doi.org/10.3390/jfmk10020216