Repeated Sprint Performance and Inter-Limb Asymmetry in Elite Female Sprinters: A Study of Lactate Dynamics and Lower Limb Muscle Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Partipiciants
2.2. Study Design
2.3. Lactate Concentration Measurement
2.4. Textile Electrodes
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RST | Repeated-sprint training |
EMG | Electromyography |
sEMG | Surface electromyography |
LA | Lactate |
ANLS | Astrocyte–neuron lactate shuttle |
BDNF | Brain-derived neurotrophic factor |
CNS | Central nervous system |
MCT | Monocarboxylate transporter |
MCT2 | Monocarboxylate transporter 2 |
LS | Lactate Scout |
mRNA | Messenger ribonucleic acid |
RMS | Root mean square |
References
- Morin, J.B.; Bourdin, M.; Édouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.R. Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, F.; Huynh, M.; Townshend, A.; McLaren, S.J.; James, L.P.; Taylor, J.M.; Weston, M.; Weakley, J. The effects of repeated-sprint training on physical fitness and physiological adaptation in athletes: A systematic review and meta-analysis. Sports Med. 2024, 54, 953–974. [Google Scholar] [CrossRef] [PubMed]
- Serpiello, F.R.; McKenna, M.J.; Stepto, N.K.; Bishop, D.J.; Aughey, R.J. Performance and physiological responses to repeated-sprint exercise: A novel multiple-set approach. Eur. J. Appl. Physiol. 2011, 111, 669–678. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.; Jeong, E.; Park, J.; Kim, J.; Tanaka, M.; Choi, J. Physiological significance of elevated levels of lactate by exercise training in the brain and body. J. Biosci. Bioeng. 2023, 135, 167–175. [Google Scholar] [CrossRef]
- Ferguson, B.S.; Rogatzki, M.J.; Goodwin, M.L.; Kane, D.A.; Rightmire, Z.; Gladden, L.B. Lactate metabolism: Historical context, prior misinterpretations, and current understanding. Eur. J. Appl. Physiol. 2018, 118, 691–728. [Google Scholar] [CrossRef] [PubMed]
- Magistretti, P.J.; Allaman, I. Lactate in the brain: From metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 2018, 19, 235–249. [Google Scholar] [CrossRef]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef]
- Exell, T.A.; Gittoes, M.J.; Irwin, G.; Kerwin, D.G. Gait asymmetry: Composite scores for mechanical analyses of sprint running. J. Biomech. 2012, 45, 1108–1111. [Google Scholar] [CrossRef]
- Bissas, A.; Walker, J.; Paradisis, G.P.; Hanley, B.; Tucker, C.B.; Jongerius, N.; Thomas, A.; Merlino, S.; Vazel, P.J.; Girard, O. Asymmetry in sprinting: An insight into sub-10 and sub-11 s men and women sprinters. Scand. J. Med. Sci. Sports 2022, 32, 69–82. [Google Scholar] [CrossRef]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 705–729. [Google Scholar] [CrossRef]
- Gołaś, A.; Pietraszewski, P.; Roczniok, R.; Terbalyan, A.; Maszczyk, A.; Opaliński, R.; Zając, A. Effects of an 8-week pre-season targeted training on sprinting performance, agility and lower limb muscular asymmetries in elite soccer players. Biol. Sport 2024, 41, 69–76. [Google Scholar] [CrossRef]
- Alcan, V.; Zinnuroğlu, M. Current developments in surface electromyography. Turk. J. Med. Sci. 2023, 53, 1019–1031. [Google Scholar] [CrossRef]
- Zifchock, R.A.; Davis, I.; Higginson, J.; Royer, T. The symmetry angle: A novel, robust method of quantifying asymmetry. Gait Posture 2008, 27, 622–627. [Google Scholar] [CrossRef]
- Santos, J.A.; Affonso, H.O.; Boullosa, D.; Pereira, T.M.C.; Fernandes, R.J.; Conceição, F. Extreme blood lactate rising after very short efforts in top-level track and field male sprinters. Res. Sports Med. 2022, 30, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Finni, T.; Hu, M.; Kettunen, P.; Vilavuo, T.; Cheng, S. Measurement of EMG activity with textile electrodes embedded into clothing. Physiol. Meas. 2007, 28, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; McAuley, W.; Read, P.; Gonzalo-Skok, O.; Lake, J.; Turner, A. Acute effect of repeated sprints on interlimb asymmetries during unilateral jumping. J. Strength. Cond. Res. 2021, 35, 2127–2132. [Google Scholar] [CrossRef]
- Radzak, K.N.; Putnam, A.M.; Tamura, K.; Hetzler, R.K.; Stickley, C.D. Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals. Gait Posture 2017, 51, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Brocherie, F.; Morin, J.B.; Millet, G.P. Lower limb mechanical asymmetry during repeated treadmill sprints. Hum. Mov. Sci. 2017, 52, 203–214. [Google Scholar] [CrossRef]
- El Hayek, L.; Khalifeh, M.; Zibara, V.; Abi Assaad, R.; Emmanuel, N.; Karnib, N.; El-Ghandour, R.; Nasrallah, P.; Bilen, M.; Ibrahim, P.; et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J. Neurosci. 2019, 39, 2369–2382. [Google Scholar] [CrossRef]
- Pellerin, L.; Pellegri, G.; Bittar, P.G.; Charnay, Y.; Bouras, C.; Martin, J.L.; Stella, N.; Magistretti, P.J. Evidence supporting the existence of an activity-dependent astrocyte–neuron lactate shuttle. Dev. Neurosci. 1998, 20, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; MacKenzie, K.R.; Putluri, N.; Maletić-Savatić, M.; Bellen, H.J. The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D. Cell Metab. 2017, 26, 719–737.e6. [Google Scholar] [CrossRef]
- Brooks, G.A. Energy Flux, Lactate Shuttling, Mitochondrial Dynamics, and Hypoxia. Adv. Exp. Med. Biol. 2016, 903, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Seifert, T.; Brassard, P.; Wissenberg, M.; Rasmussen, P.; Nordby, P.; Stallknecht, B.; Adser, H.; Jakobsen, A.H.; Pilegaard, H.; Nielsen, H.B.; et al. Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R372–R377. [Google Scholar] [CrossRef]
- Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 2004, 20, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Helm, E.E.; Tyrell, C.M.; Pohlig, R.T.; Brady, L.D.; Reisman, D.S. The presence of a single-nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke. Exp. Brain Res. 2016, 234, 341–351. [Google Scholar] [CrossRef]
- Ishii, H.; Nishida, Y. Effect of Lactate Accumulation during Exercise-induced Muscle Fatigue on the Sensorimotor Cortex. J. Phys. Ther. Sci. 2013, 25, 1637–1642. [Google Scholar] [CrossRef]
- Coco, M.; Di Corrado, D.; Calogero, R.A.; Perciavalle, V.; Maci, T.; Perciavalle, V. Attentional processes and blood lactate levels. Brain Res. 2009, 1302, 205–211. [Google Scholar] [CrossRef]
- Lima, E.V.d.; Tortoza, C.; Rosa, L.C.L.d.; Lopes-Martins, R.A.B. Study of the correlation between the velocity of motor reaction and blood lactate in different times of combat in judo. Rev. Bras. Med. Esporte 2004, 10, 339–343. [Google Scholar] [CrossRef]
- Coco, M.; Alagona, G.; Rapisarda, G.; Costanzo, E.; Calogero, R.A.; Perciavalle, V.; Perciavalle, V. Elevated blood lactate is associated with increased motor cortex excitability. Somatosens. Mot. Res. 2010, 27, 1–8. [Google Scholar] [CrossRef]
- Moscatelli, F.; Valenzano, A.; Petito, A.; Triggiani, A.I.; Ciliberti, M.A.P.; Luongo, L.; Carotenuto, M.; Esposito, M.; Messina, A.; Monda, V.; et al. Relationship between blood lactate and cortical excitability between taekwondo athletes and non-athletes after hand-grip exercise. Somatosens. Mot. Res. 2016, 33, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, C.L.; Brecht, M. Motor cortex—To act or not to act? Nat. Rev. Neurosci. 2017, 18, 694–705. [Google Scholar] [CrossRef]
- Sanes, J.N.; Donoghue, J.P. Plasticity and primary motor cortex. Annu. Rev. Neurosci. 2000, 23, 393–415. [Google Scholar] [CrossRef] [PubMed]
- Teka, W.W.; Hamade, K.C.; Barnett, W.H.; Kim, T.; Markin, S.N.; Rybak, I.A.; Molkov, Y.I. From the motor cortex to the movement and back again. PLoS ONE 2017, 12, e0179288. [Google Scholar] [CrossRef]
- Haar, S.; Donchin, O. A revised computational neuroanatomy for motor control. J. Cogn. Neurosci. 2020, 32, 1823–1836. [Google Scholar] [CrossRef]
- Hoshino, D.; Setogawa, S.; Kitaoka, Y.; Masuda, H.; Tamura, Y.; Hatta, H.; Yanagihara, D. Exercise-induced expression of monocarboxylate transporter 2 in the cerebellum and its contribution to motor performance. Neurosci. Lett. 2016, 633, 1–6. [Google Scholar] [CrossRef]
- Barros, L.F. Metabolic signaling by lactate in the brain. Trends Neurosci. 2013, 36, 396–404. [Google Scholar] [CrossRef]
- Proia, P.; Di Liegro, C.M.; Schiera, G.; Fricano, A.; Di Liegro, I. Lactate as a metabolite and a regulator in the central nervous system. Int. J. Mol. Sci. 2016, 17, 1450. [Google Scholar] [CrossRef] [PubMed]
- Lacour, J.R.; Bouvat, E.; Barthélémy, J.C. Post-competition blood lactate concentrations as indicators of anaerobic energy expenditure during 400-m and 800-m races. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 61, 172–176. [Google Scholar] [CrossRef]
- Korhonen, M.T.; Suominen, H.; Mero, A. Age and sex differences in blood lactate response to sprint running in elite master athletes. Can. J. Appl. Physiol. 2005, 30, 647–665. [Google Scholar] [CrossRef]
Variable | Set 1 | Set 2 | Set 3 | Set 4 |
---|---|---|---|---|
50 m sprint time (s) | 7.21 (7.11–7.52) a | 7.16 (7.06–7.50) | 7.12 (7.02–7.52) | 7.00 (6.93–7.40) a |
Lactate, 1 min post-set (mmol/L) | 9.0 (4.6–12.1) a | 10.5 (7.3–15.1) b | 13.6 (7.9–16.8) | 16.0 (10.8–19.9) a,b |
Lactate, 4 min post-set (mmol/L) | 7.1 (4.3–10.3) a | 9.9 (4.7–12.6) | 10.5 (6.3–16.8) | 13.9 (9.7–18.7) a |
Quadriceps asymmetry (%) | 10.7 (4.0–15.8) | 9.5 (4.8–13.2) | 8.4 (5.1–11.5) | 7.4 (5.0–9.1) |
Hamstrings asymmetry (%) | 12.6 (9.3–17.0) a | 11.2 (8.2–16.3) b | 9.4 (6.9–15.3) | 7.7 (6.7–11.0) a,b |
Gluteus asymmetry (%) | 15.9 (13.6–23.1) a,c | 13.9 (11.0–19.0) b | 11.4 (9.3–15.0) c | 9.3 (7.6–12.0) a,b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołaś, A.; Terbalyan, A.; Gepfert, M.; Roczniok, R.; Matusiński, A.; Kotuła, K.; Pietraszewski, P.; Zając, A. Repeated Sprint Performance and Inter-Limb Asymmetry in Elite Female Sprinters: A Study of Lactate Dynamics and Lower Limb Muscle Activity. J. Funct. Morphol. Kinesiol. 2025, 10, 213. https://doi.org/10.3390/jfmk10020213
Gołaś A, Terbalyan A, Gepfert M, Roczniok R, Matusiński A, Kotuła K, Pietraszewski P, Zając A. Repeated Sprint Performance and Inter-Limb Asymmetry in Elite Female Sprinters: A Study of Lactate Dynamics and Lower Limb Muscle Activity. Journal of Functional Morphology and Kinesiology. 2025; 10(2):213. https://doi.org/10.3390/jfmk10020213
Chicago/Turabian StyleGołaś, Artur, Artur Terbalyan, Mariola Gepfert, Robert Roczniok, Aleskander Matusiński, Krzysztof Kotuła, Przemysław Pietraszewski, and Adam Zając. 2025. "Repeated Sprint Performance and Inter-Limb Asymmetry in Elite Female Sprinters: A Study of Lactate Dynamics and Lower Limb Muscle Activity" Journal of Functional Morphology and Kinesiology 10, no. 2: 213. https://doi.org/10.3390/jfmk10020213
APA StyleGołaś, A., Terbalyan, A., Gepfert, M., Roczniok, R., Matusiński, A., Kotuła, K., Pietraszewski, P., & Zając, A. (2025). Repeated Sprint Performance and Inter-Limb Asymmetry in Elite Female Sprinters: A Study of Lactate Dynamics and Lower Limb Muscle Activity. Journal of Functional Morphology and Kinesiology, 10(2), 213. https://doi.org/10.3390/jfmk10020213