The Effects of Short-Term Heavy Load Squat vs. Moderate Load Olympic Weightlifting Training on Maximal Strength and Force–Velocity Profile in Young Female Handball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Measurement Protocol
2.4. Training Protocol
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FV profile | Force–velocity profile |
F0 | Theoretical maximum force |
v0 | Theoretical maximum velocity |
Pmax | Theoretical maximum power |
SQUAT | Heavy load squat training group |
OWG | Olympic weightlifting group |
CG | Control group |
References
- Wagner, H.; Fuchs, P.X.; Von Duvillard, S.P. Specific Physiological and Biomechanical Performance in Elite, Sub-Elite and in Non-Elite Male Team Handball Players. J. Sports Med. Phys. Fit. 2017, 58, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, J.T.; Comfort, P. Developing muscular strength and power. In Advanced Strength and Conditioning: An Evidence-Based Approach, 2nd ed.; Routledge: Oxfordshire, UK, 2022; pp. 13–38. ISBN 978-0-367-49135-2. [Google Scholar]
- McGuigan, M. Developing Power; National Strength & Conditioning Association, Ed.; Sport Performance Series; Human Kinetics: Champaign, IL, USA, 2017; ISBN 978-0-7360-9526-6. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Morin, J.B.; Hintzy, F.; Belli, A. A Simple Method for Measuring Force, Velocity and Power Output during Squat Jump. J. Biomech. 2008, 41, 2940–2945. [Google Scholar] [CrossRef]
- Haff, G.G.; Nimphius, S. Training Principles for Power. Strength Cond. J. 2012, 34, 2–12. [Google Scholar] [CrossRef]
- Morin, J.B.; Samozino, P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; Samozino, P.; Pareja-Blanco, F.; Conceição, F.; Cuadrado-Peñafiel, V.; González-Badillo, J.J.; Morin, J.B. Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump. Int. J. Sports Physiol. Perform. 2017, 12, 36–43. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Morin, J.B. Optimized Training for Jumping Performance Using the Force-Velocity Imbalance: Individual Adaptation Kinetics. PLoS ONE 2019, 14, e0216681. [Google Scholar] [CrossRef]
- Behm, D.G.; Young, J.D.; Whitten, J.H.D.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; Lima, C.D.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef]
- Hermassi, S.; Schwesig, R.; Aloui, G.; Shephard, R.J.; Chelly, M.S. Effects of Short-Term In-Season Weightlifting Training on the Muscle Strength, Peak Power, Sprint Performance, and Ball-Throwing Velocity of Male Handball Players. J. Strength Cond. Res. 2019, 33, 3309–3321. [Google Scholar] [CrossRef]
- Chaouachi, A.; Hammami, R.; Kaabi, S.; Chamari, K.; Drinkwater, E.J.; Behm, D.G. Olympic Weightlifting and Plyometric Training With Children Provides Similar or Greater Performance Improvements Than Traditional Resistance Training. J. Strength Cond. Res. 2014, 28, 1483–1496. [Google Scholar] [CrossRef]
- Otto, W.H.; Coburn, J.W.; Brown, L.E.; Spiering, B.A. Effects of Weightlifting vs. Kettlebell Training on Vertical Jump, Strength, and Body Composition. J. Strength Cond. Res. 2012, 26, 1199–1202. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Comfort, P.; Lake, J.P. Enhancing the Force-Velocity Profile of Athletes Using Weightlifting Derivatives. Strength Cond. J. 2017, 39, 10–20. [Google Scholar] [CrossRef]
- Petridis, L.; Pálinkás, G.; Tróznai, Z.; Béres, B.; Utczás, K. Determining Strength Training Needs Using the Force-Velocity Profile of Elite Female Handball and Volleyball Players. Int. J. Sports Sci. Coach. 2021, 16, 123–130. [Google Scholar] [CrossRef]
- Vandewalle, H.; Pérès, G.; Monod, H. Standard Anaerobic Exercise Tests. Sports Med. 1987, 4, 268–289. [Google Scholar] [CrossRef]
- Liu, H.; Yang, W.; Liu, H.; Bao, D.; Cui, Y.; Ho, I.M.K.; Li, Q. A Meta-Analysis of the Criterion-Related Validity of Session-RPE Scales in Adolescent Athletes. BMC Sports Sci. Med. Rehabil. 2023, 15, 101. [Google Scholar] [CrossRef]
- Lombardi, V.P. Beginning Weight Training: The Safe and Effective Way; W.C. Brown: Dubuque, IA, USA, 1989; ISBN 978-0-697-05496-8. [Google Scholar]
- Hammami, M.; Gaamouri, N.; Aloui, G.; Shephard, R.J.; Chelly, M.S. Effects of a Complex Strength-Training Program on Athletic Performance of Junior Female Handball Players. Int. J. Sports Physiol. Perform. 2019, 14, 163–169. [Google Scholar] [CrossRef]
- Mackey, C.S.; Thiele, R.M.; Schnaiter-Brasche, J.; Smith, D.B.; Conchola, E.C. Effects of Power-Endurance and Controlled Heavy Squat Protocols on Vertical Jump Performance in Females. Int. J. Exerc. Sci. 2020, 13, 1072–1085. [Google Scholar]
- Heggelund, J.; Fimland, M.S.; Helgerud, J.; Hoff, J. Maximal Strength Training Improves Work Economy, Rate of Force Development and Maximal Strength More than Conventional Strength Training. Eur. J. Appl. Physiol. 2013, 113, 1565–1573. [Google Scholar] [CrossRef]
- Di Rocco, F.; Papale, O.; Festino, E.; De Maio, M.; Cortis, C.; Fusco, A. Acute Effects of Mini Trampoline Training Session on Leg Stiffness and Reactive Power. Appl. Sci. 2023, 13, 9865. [Google Scholar] [CrossRef]
- Mangine, G.T.; Hoffman, J.R.; Wang, R.; Gonzalez, A.M.; Townsend, J.R.; Wells, A.J.; Jajtner, A.R.; Beyer, K.S.; Boone, C.H.; Miramonti, A.A.; et al. Resistance Training Intensity and Volume Affect Changes in Rate of Force Development in Resistance-Trained Men. Eur. J. Appl. Physiol. 2016, 116, 2367–2374. [Google Scholar] [CrossRef]
- Gullett, J.C.; Tillman, M.D.; Gutierrez, G.M.; Chow, J.W. A Biomechanical Comparison of Back and Front Squats in Healthy Trained Individuals. J. Strength Cond. Res. 2009, 23, 284–292. [Google Scholar] [CrossRef]
- Pálinkás, G.; Béres, B.; Utczás, K.; Tróznai, Z.; Petridis, L. Large Inter-Individual Variability in Force-Velocity Profile Changes in Response to Acute High-Load Resistance Training. Physiol. Int. 2024, 111, 186–198. [Google Scholar] [CrossRef]
Control Group | Squat Group | Olympic Weightlifting Group | |
---|---|---|---|
n | 8 | 7 | 12 |
Age (years) | 17.7 ± 0.7 | 18.0 ± 1.4 | 17.4 ± 0.9 |
Body Height (cm) | 171.1 ± 3.4 | 168.9 ± 4.9 | 167.3 ± 5.9 |
Body Mass (kg) | 65.8 ± 11.2 | 64.8 ± 6.6 | 64.3 ± 12.8 |
Time | Group | Interaction | |
---|---|---|---|
5RM Back Squat | F(1,24) = 45.2; p < 0.001; ηp2 = 0.65 | F(2,24) = 0.44; p > 0.05; ηp2 = 0.04 | F(1,24) = 17.2; p < 0.001; ηp2 = 0.59 |
Relative 5RM Back Squat | F(1,24) = 43.04; p < 0.01; ηp2 = 0.64 | F(2,24) = 0.32; p > 0.05; ηp2 = 0.03 | F(2,24) = 16.04; p < 0.01; ηp2 = 0.57 |
CMJ Height | F(1,24) = 9.68; p < 0.01; ηp2 = 0.29 | F(2,24) = 0.05; p > 0.05; ηp2 = 0.00 | F(2,24) = 8.18; p < 0.01; ηp2 = 0.41 |
Takeoff Velocity | F(1,24) = 8.55; p < 0.01; ηp2 = 0.26 | F(2,24) = 0.07; p > 0.05; ηp2 = 0.01 | F(2,24) = 8.30; p < 0.01; ηp2 = 0.41 |
Group | Before | After | Change (%) | ηp2 | |
---|---|---|---|---|---|
5RM Back Squat (kg) | OWG | 56.6 ± 6.8 | 66.1 ± 6.9 | 17% * | 0.83 |
SQUAT | 56.8 ± 5.5 | 62.2 ± 5.3 | 10% * | 0.88 | |
CG | 63.8 ± 12.5 | 63.4 ± 12.9 | −1% | 0.01 | |
Rel. 5RM Back Squat (kg/BM) | OWG | 0.9 ± 0.18 | 1.0 ± 0.15 | 17% * | 0.82 |
SQUAT | 0.9 ± 0.11 | 1.0 ± 0.10 | 10% * | 0.91 | |
CG | 1.0 ± 0.18 | 1.0 ± 0.15 | 0% | 0.01 | |
CMJ Height (cm) | OWG | 26.9 ± 3.0 | 28.3 ± 3.2 | 5% * | 0.71 |
SQUAT | 26.7 ± 4.7 | 28.4 ± 4.9 | 7% * | 0.82 | |
CG | 28.4 ± 2.2 | 27.7 ± 2.9 | −2% | 0.12 | |
Takeoff Velocity (m/s) | OWG | 2.3 ± 0.13 | 2.4 ± 0.13 | 3% * | 0.71 |
SQUAT | 2.3 ± 0.21 | 2.4 ± 0.21 | 3% * | 0.80 | |
CG | 2.4 ± 0.09 | 2.3 ± 0.12 | −1% | 0.13 |
Time | Group | Interaction | |
---|---|---|---|
F0 | F(1,24) = 0.26; p > 0.05; ηp2 = 0.01 | F(2,24) = 0.55; p > 0.05; ηp2 = 0.04 | F(2,24) = 1.44; p > 0.05; ηp2 = 0.11 |
v0 | F(1,24) = 1.07; p > 0.05; ηp2 = 0.04 | F(2,24) = 0.27; p > 0.05; ηp2 = 0.02 | F(2,24) = 0.32; p > 0.05; ηp2 = 0.03 |
Pmax | F(1,24) = 1.11; p > 0.05; ηp2 = 0.04 | F(2,24) = 0.37; p > 0.05; ηp2 = 0.03 | F(2,24) = 0.752; p > 0.05; ηp2 = 0.06 |
FV slope | F(1,24) = 0.02; p > 0.05; ηp2 = 0.00 | F(2,24) = 0.06; p > 0.05; ηp2 = 0.00 | F(2,24) = 0.51; p > 0.05; ηp2 = 0.04 |
Group | Before | After | Change (%) | ηp2 | |
---|---|---|---|---|---|
F0 (N/kg) | OWG | 28.8 ± 3.1 | 29.4 ± 3.2 | 2% | 0.03 |
SQUAT | 27.8 ± 3.7 | 28.4 ± 4.4 | 2% | 0.05 | |
CG | 29.0 ± 3.1 | 26.4 ± 5.8 | −9% | 0.15 | |
v0 (m/s) | OWG | 3.0 ± 0.7 | 3.0 ± 0.6 | 0% | 0.00 |
SQUAT | 3.1 ± 1.7 | 3.0 ± 0.6 | −4% | 0.08 | |
CG | 3.1 ± 1.2 | 3.1 ± 1.1 | 0% | 0.06 | |
Pmax (W) | OWG | 21.3 ± 3.8 | 21.7 ± 3.1 | 2% | 0.01 |
SQUAT | 22.2 ± 7.8 | 20.9 ± 4.0 | −6% | 0.04 | |
CG | 21.8 ± 5.9 | 17.7 ± 11.3 | −19% | 0.11 | |
FV slope (Ns/m/kg) | OWG | 0.68 ± 0.22 | 0.70 ± 0.19 | 12% | 0.01 |
SQUAT | 0.67 ± 0.27 | 0.71 ± 0.22 | 26% | 0.03 | |
CG | 0.71 ± 0.25 | 0.62 ± 0.28 | −8% | 0.06 | |
FVimb (%) | OWG | 35 ± 16 | 31 ± 23 | −14% | 0.04 |
SQUAT | 33 ± 27 | 33 ± 14 | 0% | 0.05 | |
CG | 31 ± 23 | 38 ± 28 | 7% | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pálinkás, G.; Ökrös, C.; Tróznai, Z.; Utczás, K.; Petridis, L. The Effects of Short-Term Heavy Load Squat vs. Moderate Load Olympic Weightlifting Training on Maximal Strength and Force–Velocity Profile in Young Female Handball Players. J. Funct. Morphol. Kinesiol. 2025, 10, 187. https://doi.org/10.3390/jfmk10020187
Pálinkás G, Ökrös C, Tróznai Z, Utczás K, Petridis L. The Effects of Short-Term Heavy Load Squat vs. Moderate Load Olympic Weightlifting Training on Maximal Strength and Force–Velocity Profile in Young Female Handball Players. Journal of Functional Morphology and Kinesiology. 2025; 10(2):187. https://doi.org/10.3390/jfmk10020187
Chicago/Turabian StylePálinkás, Gergely, Csaba Ökrös, Zsófia Tróznai, Katinka Utczás, and Leonidas Petridis. 2025. "The Effects of Short-Term Heavy Load Squat vs. Moderate Load Olympic Weightlifting Training on Maximal Strength and Force–Velocity Profile in Young Female Handball Players" Journal of Functional Morphology and Kinesiology 10, no. 2: 187. https://doi.org/10.3390/jfmk10020187
APA StylePálinkás, G., Ökrös, C., Tróznai, Z., Utczás, K., & Petridis, L. (2025). The Effects of Short-Term Heavy Load Squat vs. Moderate Load Olympic Weightlifting Training on Maximal Strength and Force–Velocity Profile in Young Female Handball Players. Journal of Functional Morphology and Kinesiology, 10(2), 187. https://doi.org/10.3390/jfmk10020187