Effects of Transducer Placement on Load–Velocity Relationships in Smith Machine and Free Weight Squats in Trained Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Design
2.3. Maximum Dynamic Strength (1-RM) in the Full Squat Exercise
2.4. General and Specific Warm-Up
2.5. Sensor Placement
2.6. Jump Performance
2.7. Statistical Analysis
3. Results
3.1. Maximum and Relative Strength
3.2. Load–Velocity Parameters and Pearson’s Correlations Across Conditions
3.3. Comparison of Mean Velocity Across Conditions and Sensor Attachment Points
3.4. Agreement and Interchangeability Analysis Between SM BAR and FW BAR
3.5. Agreement and Interchangeability Analysis Between SM BELT and FW BELT
3.6. Agreement and Interchangeability Analysis Between SM BAR and SM BELT
3.7. Agreement and Interchangeability Analysis Between FW BAR and FW BELT
3.8. Relationships of Jump Performance with Load–Velocity Parameters and Strength Measures in SM and FW
3.9. Relationships of Jump Performance with SM BAR Velocities Across All Loads
3.10. Relationships of Jump Performance with SM BELT Velocities Across All Loads
3.11. Relationships of Jump Performance with FW BAR Velocities Across All Loads
3.12. Relationships of Jump Performance with FW BELT Velocities Across All Loads
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Bland–Altman Plots (30–100% Loads) Between SM BAR and FW BAR
Appendix A.2. Bland–Altman Plots (30–100% Loads) Between SM BELT and FW BELT
Appendix A.3. Bland–Altman Plots (30–100% Loads) Between SM BAR and SM BELT
Appendix A.4. Bland–Altman Plots (30–100% Loads) Between FW BAR and FW BELT
References
- Marcos-Frutos, D.; Miras-Moreno, S.; Márquez, G.; García-Ramos, A. Comparative Effects of the Free Weights and Smith Machine Squat and Bench Press: The Important Role of Specificity for Strength Adaptations. Int. J. Sports Physiol. Perform. 2025, 20, 292–300. [Google Scholar] [CrossRef]
- Schick, E.E.; Coburn, J.W.; Brown, L.E.; Judelson, D.A.; Khamoui, A.V.; Tran, T.T.; Uribe, B.P. A comparison of muscle activation between a Smith machine and free weight bench press. J. Strength Cond. Res. 2010, 24, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Cotterman, M.L.; Darby, L.A.; Skelly, W.A. Comparison of muscle force production using the Smith machine and free weights for bench press and squat exercises. J. Strength Cond. Res. 2005, 19, 169–176. [Google Scholar] [CrossRef]
- Liao, K.; Bian, C.; Chen, Z.; Yuan, Z.; Bishop, C.; Han, M.; Li, Y.; Zheng, Y. Repetition velocity as a measure of loading intensity in the free weight and Smith machine Bulgarian split squat. PeerJ 2023, 11, e15863. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Kobal, R.; Moraes, J.E.; Kitamura, K.; Cal Abad, C.C.; Pereira, L.A.; Nakamura, F.Y. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach. J. Strength Cond. Res. 2017, 31, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Fry, A.C.; Weiss, L.W.; Kinzey, S.J.; Moore, C.A. Kinetic comparison of free weight and machine power cleans. J. Strength Cond. Res. 2008, 22, 1785–1789. [Google Scholar] [CrossRef]
- Hernández-Belmonte, A.; Buendía-Romero, Á.; Pallares, J.G.; Martínez-Cava, A. Velocity-Based Method in Free-Weight and Machine-Based Training Modalities: The Degree of Freedom Matters. J. Strength Cond. Res. 2023, 37, 500–509. [Google Scholar] [CrossRef]
- Schwanbeck, S.; Chilibeck, P.D.; Binsted, G. A comparison of free weight squat to Smith machine squat using electromyography. J. Strength Cond. Res. 2009, 23, 2588–2591. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Banyard, H.G.; Nosaka, K.; Vernon, A.D.; Gregory Haff, G. The reliability of individualized load–velocity profiles. Int. J. Sports Physiol. Perform. 2018, 13, 763–769. [Google Scholar] [CrossRef]
- Thompson, S.W.; Rogerson, D.; Ruddock, A.; Greig, L.; Dorrell, H.F.; Barnes, A. A novel approach to 1rm prediction using the load-velocity profile: A comparison of models. Sports 2021, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; Pallarés, J.G.; Pérez, C.E.; Morán-Navarro, R.; González-Badillo, J.J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports Med. Int. Open 2017, 01, E80–E88. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernández, C.; Torres-Ronda, L. The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges. Sports 2021, 9, 47. [Google Scholar] [CrossRef]
- Tsoukos, A.; Bogdanis, G.C. Lower Fatigue in the Eccentric than the Concentric Phase of a Bench Press Set Executed with Maximum Velocity to Failure Against Both Heavy and Light Loads. J. Hum. Kinet. 2023, 88, 119–129. [Google Scholar] [CrossRef]
- Tsoukos, A.; Brown, L.E.; Terzis, G.; Wilk, M.; Zajac, A.; Bogdanis, G.C. Changes in EMG and movement velocity during a set to failure against different loads in the bench press exercise. Scand. J. Med. Sci. Sports 2021, 31, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Brown, L.E.; Veligekas, P.; Terzis, G.; Bogdanis, G.C. Postactivation potentiation of bench press throw performance using velocity-based conditioning protocols with low and moderate loads. J. Hum. Kinet. 2019, 68, 81–98. [Google Scholar] [CrossRef]
- Tsoukos, A.; Wilk, M.; Krzysztofik, M.; Zajac, A.; Bogdanis, G.C. Acute Effects of Fast vs. Slow Bench Press Repetitions with Equal Time Under Tension on Velocity, sEMG Activity, and Applied Force in the Bench Press Throw. J. Funct. Morphol. Kinesiol. 2025, 10, 4. [Google Scholar] [CrossRef]
- Tsoukos, A.; Brown, L.E.; Terzis, G.; Veligekas, P.; Bogdanis, G.C. Potentiation of Bench Press Throw Performance Using a Heavy Load and Velocity-Based Repetition Control. J. Strength Cond. Res. 2021, 35, S72–S79. [Google Scholar] [CrossRef]
- Lake, J.P.; Lauder, M.A.; Smith, N.A. Barbell kinematics should not be used to estimate power output applied to the Barbell-and-body system center of mass during lower-body resistance exercise. J. Strength Cond. Res. 2012, 26, 1302–1307. [Google Scholar] [CrossRef]
- McBride, J.M.; Haines, T.L.; Kirby, T.J. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J. Sports Sci. 2011, 29, 1215–1221. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Kissick, C.R.; Techmanski, B.S.; Mann, J.B.; Comfort, P. Velocity-Based Training With Weightlifting Derivatives: Barbell and System Velocity Comparisons. J. Strength Cond. Res. 2024, 39, 135–146. [Google Scholar] [CrossRef]
- Hojka, V.; Šťastný, P.; Tufano, J.J.; Omcirk, D.; Janikov, M.T.; Komarc, M.; Jebavý, R. Does a linear position transducer placed on a stick and belt provide sufficient validity and reliability of countermovement jump performance outcomes? Biol. Sport 2022, 39, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Baena-Raya, A.; Díez-Fernández, D.M.; García-de-Alcaraz, A.; Soriano-Maldonado, A.; Pérez-Castilla, A.; Rodríguez-Pérez, M.A. Assessing the Maximal Mechanical Capacities Through the Load-Velocity Relationship in Elite Versus Junior Male Volleyball Players. Sports Health 2024, 16, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, J.; Ishii, N. Relations between force-velocity characteristics of the knee-hip extension movement and vertical jump performance. J. Strength Cond. Res. 2007, 21, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Vasiljevic, I.; Manojlovic, M.; Trivic, T.; Ranisavljev, M.; Stajer, V.; Thomas, E.; Bianco, A.; Drid, P. Optimizing strength training protocols in young females: A comparative study of velocity-based and percentage-based training programs. Heliyon 2024, 10, e30644. [Google Scholar] [CrossRef]
- Rauch, J.T.; Loturco, I.; Cheesman, N.; Thiel, J.; Alvarez, M.; Miller, N.; Carpenter, N.; Barakat, C.; Velasquez, G.; Stanjones, A.; et al. Similar strength and power adaptations between two different velocity-based training regimens in collegiate female volleyball players. Sports 2018, 6, 163. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Walker, S.; Häkkinen, K. Validity of Using Velocity to Estimate Intensity in Resistance Exercises in Men and Women. Int. J. Sports Med. 2020, 41, 1047–1055. [Google Scholar] [CrossRef]
- Montalvo-Pérez, A.; Alejo, L.B.; Valenzuela, P.L.; Gil-Cabrera, J.; Talavera, E.; Luia, A.; Barranco-Gil, D. Traditional Versus Velocity-Based Resistance Training in Competitive Female Cyclists: A Randomized Controlled Trial. Front. Physiol. 2021, 12, 586113. [Google Scholar] [CrossRef]
- Zhang, M.; Liang, X.; Huang, W.; Ding, S.; Li, G.; Zhang, W.; Li, C.; Zhou, Y.; Sun, J.; Li, D. The effects of velocity-based versus percentage-based resistance training on athletic performances in sport-collegiate female basketball players. Front. Physiol. 2023, 13, 992655. [Google Scholar] [CrossRef]
- Rebelo, A.; Pereira, J.R.; Martinho, D.V.; Valente-Dos-Santos, J. Effects of a Velocity-Based Complex Training Program in Young Female Artistic Roller Skating Athletes. J. Hum. Kinet. 2023, 86, 217–234. [Google Scholar] [CrossRef]
- Rissanen, J.; Walker, S.; Pareja-Blanco, F.; Häkkinen, K. Velocity-based resistance training: Do women need greater velocity loss to maximize adaptations? Eur. J. Appl. Physiol. 2022, 122, 1269–1280. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Tsoukos, A.; Veligekas, P.; Tsolakis, C.; Terzis, G. Effects of muscle action type with equal impulse of conditioning activity on postactivation potentiation. J. Strength Cond. Res. 2014, 28, 2521–2528. [Google Scholar] [CrossRef]
- Tsoukos, A.; Veligekas, P.; Brown, L.E.; Terzis, G.; Bogdanis, G.C. Delayed Effects of a Low-Volume, Power-Type Resistance Exercise Session on Explosive Performance. J. Strength Cond. Res. 2018, 32, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Coburn, J.; Malek., M. NSCA Essentials of Personal Training, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2012; ISBN 9780736084154. [Google Scholar]
- NSCA. Exercise Technique Manual for Resistance Training, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2016; ISBN 9781492596998. [Google Scholar]
- Todoroff, M. Dynamic deep squat: Lower-body kinematics and considerations regarding squat technique, load position, and heel height. Strength Cond. J. 2017, 39, 71–80. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef]
- Rojas-Jaramillo, A.; Cuervo-Arango, D.A.; Quintero, J.D.; Ascuntar-Viteri, J.D.; Acosta-Arroyave, N.; Ribas-Serna, J.; González-Badillo, J.J.; Rodríguez-Rosell, D. Impact of the deep squat on articular knee joint structures, friend or enemy? A scoping review. Front. Sports Act. Living 2024, 6, 1477796. [Google Scholar] [CrossRef]
- Puig-Diví, A.; Escalona-Marfil, C.; Padullés-Riu, J.M.; Busquets, A.; Padullés-Chando, X.; Marcos-Ruiz, D. Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives. PLoS ONE 2019, 14, e0216448. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Bogdanis, G.C.; Terzis, G.; Veligekas, P. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability. J. Strength Cond. Res. 2016, 30, 2250–2257. [Google Scholar] [CrossRef]
- Garnacho-Castaño, M.V.; López-Lastra, S.; Maté-Muñoz, J.L. Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 2015, 14, 128–136. [Google Scholar]
- Rago, V.; Brito, J.; Figueiredo, P.; Carvalho, T.; Fernandes, T.; Fonseca, P.; Rebelo, A. Countermovement jump analysis using different portable devices: Implications for field testing. Sports 2018, 6, 91. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Domínguez, A.; García-Romero, J.C.; Páez-Moguer, J.; Ponce-García, T.; Medina-Alcántara, M.; Alvero-Cruz, J.R. Relationship between running spatiotemporal kinematics and muscle performance in well-trained youth female athletes. A cross-sectional study. Int. J. Environ. Res. Public Health 2021, 18, 8869. [Google Scholar] [CrossRef]
- Tsoukos, A.; Drikos, S.; Brown, L.E.; Sotiropoulos, K.; Veligekas, P.; Bogdanis, G.C. Upper and Lower Body Power Are Strong Predictors for Selection of Male Junior National Volleyball Team Players. J. Strength Cond. Res. 2019, 33, 2760–2767. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Drikos, S.; Brown, L.E.; Sotiropoulos, K.; Veligekas, P.; Bogdanis, G.C. Anthropometric and Motor Performance Variables are Decisive Factors for the Selection of Junior National Female Volleyball Players. J. Hum. Kinet. 2019, 67, 163–173. [Google Scholar] [CrossRef]
- Tsoukos, A.; Tsoukala, M.; Mirto Papadimitriou, D.; Terzis, G.; Bogdanis, G.C. Acute Effects of Low vs. High Inertia During Flywheel Deadlifts with Equal Force Impulse on Vertical Jump Performance. Sensors 2025, 25, 1125. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Bogdanis, G.C. The effects of a five-month lockdown due to COVID-19 on physical fitness parameters in adolescent students: A comparison between cohorts. Int. J. Environ. Res. Public Health 2022, 19, 326. [Google Scholar] [CrossRef]
- Healy, R.; Kenny, I.C.; Harrison, A.J. Assessing reactive strength measures in jumping and hopping using the optojumpTM system. J. Hum. Kinet. 2016, 54, 23–32. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, K.; Cui, Y.; Tian, Y.; Wang, S.; Cao, J.; Shen, Y. Development and Evaluation of a Full-Waveform Resistance Training Monitoring System Based on a Linear Position Transducer. Sensors 2023, 23, 2435. [Google Scholar] [CrossRef]
- Kozub, F.M.; Walker, A. Using Linear Positioning Transducers to Improve Snatch Performance in Weightlifters. Strength Cond. J. 2025. [Google Scholar] [CrossRef]
- Lorenzetti, S.; Lamparter, T.; Lüthy, F. Validity and reliability of simple measurement device to assess the velocity of the barbell during squats. BMC Res. Notes 2017, 10, 707. [Google Scholar] [CrossRef]
- García-Ramos, A.; Ulloa-Díaz, D.; Barboza-González, P.; Rodríguez-Perea, Á.; Martínez-García, D.; Quidel-Catrilelbún, M.; Guede-Rojas, F.; Cuevas-Aburto, J.; Janicijevic, D.; Weakley, J. Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models. PLoS ONE 2019, 14, e0212085. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Gregory Haff, G. Mean velocity vs. Mean propulsive velocity vs. Peak velocity: Which variable determines bench press relative load with higher reliability? J. Strength Cond. Res. 2018, 32, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Jukic, I.; Janicijevic, D.; Akyildiz, Z.; Senturk, D.; García-Ramos, A. Load-Velocity Relationship Variables to Assess the Maximal Neuromuscular Capacities During the Back-Squat Exercise. Sports Health 2022, 14, 885–893. [Google Scholar] [CrossRef]
- Banyard, H.G.; Nosaka, K.; Haff, G.G. Reliability and Validity of the Load-Velocity Relationship to Predict the 1RM Back Squat. J. Strength Cond. Res. 2017, 31, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; García-Ramos, A.; Padial, P.; Morales-Artacho, A.J.; Feriche, B. Load-velocity relationship in variations of the half-squat exercise: Influence of execution technique. J. Strength Cond. Res. 2020, 34, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; Nosaka, K.; Alarcón-Gómez, J.; Martín-Rivera, F. Validity and Reliability of Inertial Measurement System for Linear Movement Velocity in Flywheel Squat Exercise. Sensors 2023, 23, 2193. [Google Scholar] [CrossRef]
- Biscarini, A.; Benvenuti, P.; Botti, F.; Mastrandrea, F.; Zanuso, S. Modelling the joint torques and loadings during squatting at the Smith machine. J. Sports Sci. 2011, 29, 457–469. [Google Scholar] [CrossRef]
- Marcote-Pequeño, R.; García-Ramos, A.; Cuadrado-Peñafiel, V.; González-Hernández, J.M.; Gómez, M.Á.; Jiménez-Reyes, P. Association Between the Force-Velocity Profile and Performance Variables Obtained in Jumping and Sprinting in Elite Female Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 209–215. [Google Scholar] [CrossRef]
- Vandewalle, H.; Peres, G.; Heller, J.; Panel, J.; Monod, H. Force-velocity relationship and maximal power on a cycle ergometer —Correlation with the height of a vertical jump. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 650–656. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; García-Ramos, A.; Cuadrado-Peñafiel, V.; Brughelli, M.; Morin, J.-B.B. Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ 2018, 2018, e5937. [Google Scholar] [CrossRef]
- Behm, D.G.; Sale, D.G. Velocity specificity of resistance training. Sports Med. 1993, 15, 374–388. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Jones, P.A.; Rothwell, J.; Chiang, C.Y.; Comfort, P. An Investigation into the Relationship between Maximum Isometric Strength and Vertical Jump Performance. J. Strength Cond. Res. 2015, 29, 2176–2185. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L.; Mcbride, J.M.; Cormie, P.; Mccaulley, G.O. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of Strength. J. Strength Cond. Res. 2008, 22, 699–707. [Google Scholar] [CrossRef] [PubMed]
FW-BAR | FW-BELT | SM-BAR | SM-BELT | |
---|---|---|---|---|
ICC | 0.987 | 0.986 | 0.993 | 0.992 |
LOWER | 0.970 | 0.969 | 0.984 | 0.969 |
UPPER | 0.994 | 0.993 | 0.997 | 0.993 |
SEM (m∙s−1) | 0.022 | 0.024 | 0.013 | 0.014 |
% SEM | 2.5% | 2.7% | 1.5% | 1.7% |
Variable | Free Weights | Smith Machine | Cohen’s D |
---|---|---|---|
Maximum Strength (kg) | 85.1 ± 14.5 | 92.9 ± 16.2 * | 0.53 |
Relative Strength (kg∙kg−1) | 1.38 ± 0.23 | 1.50 ± 0.24 * | 0.55 |
Knee Angle (°) | 46.0 ± 11.5 | 45.1 ± 13.2 | 0.08 |
Condition | V0 (m∙s−1) | L0 (kg) | SLOPE (m∙s−1∙kg−1) | SEE (m∙s−1) | Pearson’s r (Fisher’s Z-Transformed) |
---|---|---|---|---|---|
SM BAR | 1.62 ± 0.19 * | 118.3 ± 20.3 # | −0.014 ± 0.003 *# | 0.050 ± 0.025 | −0.988 (−2.8 ± 0.8) |
SM BELT | 1.53 ± 0.19 | 119.8 ± 21.1 # | −0.013 ± 0.003 # | 0.049 ± 0.021 | −0.986 (−2.6 ± 0.5) |
FW BAR | 1.64 ± 0.20 * | 109.6 ± 16.7 | −0.015 ± 0.003 | 0.055 ± 0.020 | −0.983 (−2.5 ± 0.4) |
FW BELT | 1.65 ± 0.21 * | 107.9 ± 16.8 | −0.015 ± 0.003 | 0.054 ± 0.019 | −0.985 (−2.5 ± 0.3) |
Conditions | ||||
---|---|---|---|---|
Loads | SM BAR | SM BELT | FW BAR | FW BELT |
30% | 1.24 ± 0.13 * | 1.18 ± 0.13 | 1.25 ± 0.14 *† | 1.25 ± 0.15 *† |
40% | 1.11 ± 0.11 * | 1.06 ± 0.11 | 1.12 ± 0.12 *† | 1.12 ± 0.13 * |
50% | 0.98 ± 0.09 * | 0.94 ± 0.10 | 0.99 ± 0.10 * | 0.99 ± 0.11 * |
60% | 0.86 ± 0.08 * | 0.82 ± 0.08 | 0.87 ± 0.08 * | 0.86 ± 0.09 * |
70% | 0.73 ± 0.06 * | 0.70 ± 0.06 | 0.74 ± 0.07 * | 0.72 ± 0.07 * |
80% | 0.61 ± 0.05 * | 0.58 ± 0.05 | 0.61 ± 0.05 * | 0.59 ± 0.06 ‡ |
90% | 0.48 ± 0.04 * | 0.47 ± 0.04 | 0.48 ± 0.05 | 0.46 ± 0.05 †‡ |
100% | 0.35 ± 0.04 | 0.35 ± 0.04 | 0.35 ± 0.05 | 0.33 ± 0.05 *†‡ |
Velocity SM BAR and FW BAR | Velocity SM BELT and FW BELT | Velocity SM BAR and SM BELT | Velocity FW BAR and FW BELT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Loads | TE | %TE | LIN’s CCC | TE | %TE | LIN’s CCC | TE | %TE | LIN’s CCC | TE | %TE | LIN’s CCC |
30% | 0.03 | 2.3% | 0.95 | 0.04 | 3.0% | 0.81 | 0.03 | 2.8% | 0.83 | 0.013 | 1.0% | 0.99 |
40% | 0.02 | 2.0% | 0.95 | 0.03 | 2.9% | 0.82 | 0.03 | 2.8% | 0.82 | 0.012 | 1.1% | 0.99 |
50% | 0.02 | 1.7% | 0.96 | 0.03 | 2.7% | 0.83 | 0.03 | 2.8% | 0.81 | 0.011 | 1.1% | 0.99 |
60% | 0.01 | 1.6% | 0.97 | 0.02 | 2.6% | 0.85 | 0.02 | 2.8% | 0.80 | 0.011 | 1.3% | 0.98 |
70% | 0.01 | 1.9% | 0.95 | 0.02 | 2.8% | 0.86 | 0.02 | 2.8% | 0.86 | 0.011 | 1.5% | 0.96 |
80% | 0.02 | 3.0% | 0.88 | 0.02 | 3.4% | 0.85 | 0.02 | 2.8% | 0.79 | 0.011 | 1.9% | 0.93 |
90% | 0.02 | 5.0% | 0.71 | 0.02 | 4.8% | 0.75 | 0.01 | 2.9% | 0.81 | 0.012 | 2.5% | 0.90 |
100% | 0.03 | 8.7% | 0.57 | 0.03 | 7.8% | 0.61 | 0.01 | 3.1% | 0.90 | 0.013 | 3.7% | 0.89 |
Variable | SJ | CMJ | DJ |
---|---|---|---|
V0 SM BAR | 0.87 * | 0.90 * | 0.71 * |
V0 SM BELT | 0.74 * | 0.77 * | 0.67 * |
V0 FW BAR | 0.86 * | 0.91 * | 0.74 * |
V0 FW BELT | 0.89 * | 0.93 * | 0.80 * |
L0 SM BAR | 0.10 | 0.00 | 0.06 |
L0 SM BELT | 0.05 | −0.04 | 0.00 |
L0 FW BAR | 0.36 | 0.24 | 0.39 |
L0 FW BELT | 0.38 | 0.26 | 0.43 |
Maximum Strength SM | 0.28 | 0.19 | 0.23 |
Maximum Strength FW | 0.53 | 0.46 | 0.53 |
Relative Strength SM | 0.47 | 0.34 | 0.43 |
Relative Strength FW | 0.70 * | 0.60 | 0.71 * |
Jump Performance vs. SM BAR Velocity | Jump Performance vs. SM BELT Velocity | Jump Performance vs. FW BAR Velocity | Jump Performance vs. FW BELT Velocity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Loads | SJ | CMJ | DJ | SJ | CMJ | DJ | SJ | CMJ | DJ | SJ | CMJ | DJ |
30% | 0.90 * | 0.91 * | 0.75 * | 0.78 * | 0.79 * | 0.76 * | 0.88 * | 0.92 * | 0.75 * | 0.91 * | 0.93 * | 0.81 * |
40% | 0.91 * | 0.92 * | 0.76 * | 0.79 * | 0.79 * | 0.77 * | 0.89 * | 0.91 * | 0.75 * | 0.91 * | 0.92 * | 0.82 * |
50% | 0.91 * | 0.92 * | 0.78 * | 0.79 * | 0.79 * | 0.79 * | 0.90 * | 0.90 * | 0.75 * | 0.91 * | 0.91 * | 0.82 * |
60% | 0.92 * | 0.92 * | 0.80 * | 0.80 * | 0.78 * | 0.81 * | 0.89 * | 0.87 * | 0.74 * | 0.91 * | 0.88 * | 0.82 * |
70% | 0.92 * | 0.90 * | 0.82 * | 0.78 * | 0.76 * | 0.82 * | 0.85 * | 0.80 * | 0.69 * | 0.87 * | 0.82 * | 0.79 * |
80% | 0.88 * | 0.84 * | 0.82 * | 0.73 * | 0.68 * | 0.81 * | 0.72 * | 0.63 * | 0.57 | 0.78 * | 0.69 * | 0.71 * |
90% | 0.71 * | 0.65 * | 0.72 * | 0.54 | 0.46 | 0.68 * | 0.45 | 0.31 | 0.32 | 0.55 | 0.42 | 0.51 |
100% | 0.34 | 0.24 | 0.44 | 0.15 | 0.05 | 0.34 | 0.10 | −0.06 | 0.03 | 0.21 | 0.05 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoukos, A.; Bogdanis, G.C. Effects of Transducer Placement on Load–Velocity Relationships in Smith Machine and Free Weight Squats in Trained Women. J. Funct. Morphol. Kinesiol. 2025, 10, 178. https://doi.org/10.3390/jfmk10020178
Tsoukos A, Bogdanis GC. Effects of Transducer Placement on Load–Velocity Relationships in Smith Machine and Free Weight Squats in Trained Women. Journal of Functional Morphology and Kinesiology. 2025; 10(2):178. https://doi.org/10.3390/jfmk10020178
Chicago/Turabian StyleTsoukos, Athanasios, and Gregory C. Bogdanis. 2025. "Effects of Transducer Placement on Load–Velocity Relationships in Smith Machine and Free Weight Squats in Trained Women" Journal of Functional Morphology and Kinesiology 10, no. 2: 178. https://doi.org/10.3390/jfmk10020178
APA StyleTsoukos, A., & Bogdanis, G. C. (2025). Effects of Transducer Placement on Load–Velocity Relationships in Smith Machine and Free Weight Squats in Trained Women. Journal of Functional Morphology and Kinesiology, 10(2), 178. https://doi.org/10.3390/jfmk10020178