Effect of 4 Weeks of High-Intensity Interval Training (HIIT) on VO2max, Anaerobic Power, and Specific Performance in Cyclists with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.4. Reference Tests
2.5. Body Composition
2.6. Estimated VO2max
2.7. The 30 s Long Wingate Anaerobic Test (WAnT_30 s)
2.8. Specific Performance
2.9. Training Program
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavedon, V.; Rosponi, A.; Alviti, F.; De Angelis, M.; Guerra, E.; Rodio, A.; Di Giacinto, B.; Milanese, C.; Bernardi, M. Comparison between the 10- and the 30-s-long Wingate Anaerobic Test in summer Paralympic athletes with a lower limb impairment. Sport Sci. Health 2021, 17, 79–90. [Google Scholar] [CrossRef]
- International Paralympic Committee. IPC Classification Code; International Paralympic Committee: Bonn, Germany, 2025. [Google Scholar]
- International Paralympic Committee. IPC Athlete Classification Code; International Paralympic Committee: Bonn, Germany, 2015; Available online: https://shorturl.at/RK2nJ (accessed on 30 April 2023).
- Union Cycliste Internationale. UCI Regulations Part 16 Para-Cycling; Union Cycliste Internationale: Aigle, Switzerland, 2023; Available online: https://archive.uci.org/docs/default-source/rules-and-regulations/part-xvi--para-cycling.pdf?sfvrsn=47af1c56_34 (accessed on 28 October 2023).
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat 2020, 16, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Puce, L.; Pallecchi, I.; Chamari, K.; Marinelli, L.; Innocenti, T.; Pedrini, R.; Mori, L.; Trompetto, C. Systematic Review of Fatigue in Individuals With Cerebral Palsy. Front. Hum. Neurosci. 2021, 15, 598800. [Google Scholar] [CrossRef] [PubMed]
- Cans, C.; Dolk, H.; Platt, M.; Colver, A.; Prasauskene, A.; Rageloh-Mann, I.K. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev. Med. Child Neurol. 2007, 49, 35–38. [Google Scholar] [CrossRef]
- Bax, M.; Goldstein, M.; Rosenbaum, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damiano, D. Proposed definition and classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef]
- Union Cycliste Internationale. UCI Cycling Regulations Part 16 Para-Cycling—Version on 1 January 2025; Union Cycliste Internationale: Aigle, Switzerland, 2025. [Google Scholar]
- Muchaxo, R.; De Groot, S.; Kouwijzer, I.; Van Der Woude, L.; Janssen, T.; Nooijen, C.F.J. A Role for Trunk Function in Elite Recumbent Handcycling Performance? J. Sports Sci. 2021, 39, 2312–2321. [Google Scholar] [CrossRef]
- Zeller, S.; Abel, T.; Strueder, H.K. Monitoring Training Load in Handcycling: A Case Study. J. Strength Cond. Res. 2017, 31, 3094–3100. [Google Scholar] [CrossRef]
- Muñoz-Galíndez, E.; Lasso-Quilindo, C.A.; Pérez-Muñoz, S. Adapted cycling: Beacon of light to heal physical and psychological wounds. Colomb. J. Sociol. 2022, 45, 349–372. [Google Scholar] [CrossRef]
- Brickley, G.; Gregson, H.C. A Case Study of a Paralympic Cerebral Palsy Cyclist Using Torque Analysis. Int. J. Sports Sci. Coach. 2011, 6, 269–272. [Google Scholar] [CrossRef]
- Flueck, J.L. Nutritional Considerations for Para-Cycling Athletes: A Narrative Review. Sports 2021, 9, 154. [Google Scholar] [CrossRef]
- Villa del Bosque, G.; González-Devesa, D.; Villa-Vicente, J.G.; García-Fresneda, A.; Suárez-Iglesias, D.; Ayán-Pérez, C. Exploring research on competitive Para-cyclists and its related factors: A scoping review. Am. J. Phys. Med. Rehabil. 2024, 103, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.H.; De Luigi, A.J. Adaptive Cycling. In Adaptive Sports Medicine; Springer International Publishing: New York, NY, USA, 2023; pp. 129–138. [Google Scholar] [CrossRef]
- Kouwijzer, I.; Valent, L.; Osterthun, R.; van der Woude, L.; de Groot, S. Peak power output in handcycling of individuals with a chronic spinal cord injury: Predictive modeling, validation and reference values. Disabil. Rehabil. 2020, 42, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Nevin, J.; Smith, P.; Waldron, M.; Patterson, S.; Price, M.; Hunt, A.; Blagrove, R. Efficacy of an 8-Week Concurrent Strength and Endurance Training program on Hand Cycling Performance. J. Strength Cond. Res. 2018, 32, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.; Mason, B.S.; Stephenson, B.T.; Goosey-Tolfrey, V.L. Physiological responses during simulated 16 km recumbent handcycling time trial and determinants of performance in trained handcyclists. Eur. J. Appl. Physiol. 2020, 120, 1621–1628. [Google Scholar] [CrossRef]
- Kim, S.H.; An, H.J.; Choi, J.H.; Kim, Y.Y. Effects of 2-week intermittent training in hypobaric hypoxia on the aerobic energy metabolism and performance of cycling athletes with disabilities. J. Phys. Ther. Sci. 2017, 29, 1116–1120. [Google Scholar] [CrossRef]
- Muchaxo, R.; De Groot, S.; Kouwijzer, I.; van der Woude, L.H.V.; Nooijen, C.F.J.; Janssen, T.W.J. Association between upper-limb isometric strength and handcycling performance in elite athletes. Sports Biomech. 2022, 1–20. [Google Scholar] [CrossRef]
- Kouwijzer, I.; Valent, L.J.M.; van Bennekom, C.A.M.; Post, M.W.M.; van der Woude, L.H.V.; de Groot, S. Training for the HandbikeBattle: An explorative analysis of training load and handcycling physical capacity in recreationally active wheelchair users. Disabil. Rehabil. 2022, 44, 2723–2732. [Google Scholar] [CrossRef]
- Lasso-Quilindo, C.A.; Chalapud-Narváez, L.M. High Intensity Interval Training (HIIT) in Paralympic Athletes. A narrative review. Retos 2024, 51, 1431–1441. [Google Scholar] [CrossRef]
- Iturricastillo, A.; Granados, C.; Yanci, J. Changes in Body Composition and Physical Performance in Wheelchair Basketball Players During a Competitive Season. J. Hum. Kinet. 2015, 48, 157–165. [Google Scholar] [CrossRef]
- Iturricastillo, A.; Yanci, J.; Granados, C. Neuromuscular Responses and Physiological Changes During Small-Sided Games in Wheelchair Basketball. Adapt. Phys. Act. Q. 2018, 35, 20–35. [Google Scholar] [CrossRef]
- Briley, S.J.; O’Brien, T.J.; Oh, Y.; Vegter, R.J.K.; Chan, M.; Mason, B.S.; Goosey-Tolfrey, V.L. Wheelchair rugby players maintain sprint performance but alter propulsion biomechanics after simulated match play. Scand. J. Med. Sci. Sports 2023, 33, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
- Peña-González, I.; Moya-Ramón, M. Physical performance preparation for the cerebral palsy football world cup: A team study. Apunts Sports Med. 2023, 58, 100413. [Google Scholar] [CrossRef]
- Stephenson, B.T.; Shill, A.; Lenton, J.; Goosey-Tolfrey, V. Physiological Correlates to In-Race Paratriathlon Cycling Performance. Int. J. Sports Med. 2020, 41, 539–544. [Google Scholar] [CrossRef]
- Koontz, A.M.; Garfunkel, C.E.; Crytzer, T.M.; Anthony, S.J.; Nindl, B.C. Feasibility, acceptability, and preliminary efficacy of a handcycling high-intensity interval training program for individuals with spinal cord injury. Spinal Cord 2021, 59, 34–43. [Google Scholar] [CrossRef]
- Lasso-Quilindo, C.A.; Chalapud-Narváez, L.M.; Medina-López, J.E.; García-Mantilla, E.D. Effects of HIIT on Physical Fitness and Sports Performance in 800 m and 1500 m Para Athletics Middle Distance Runners: A Case Study. Retos 2024, 56, 707–717. [Google Scholar] [CrossRef]
- Sanabria, J.R.; Cardozo, L.Á.; Cortina, M.D.J. Effects of hiit vs. traditional functional training in a group of workers at risk of metabolic syndrome and cardiovascular disease in the district of Cartagena, Colombia. Retos 2024, 51, 551–558. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P. High-Intensity Interval Training, Solutions to the Programming Puzzle: Part I: Cardiopulmonary Emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-Intensity Interval Training, Solutions to the Programming Puzzle: Part II: Anaerobic Energy, Neuromuscular Load and Practical Applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef]
- De Groot, S.; Janssen, T.; Evers, M.; Van Der Luijt, P.; Nienhuys, K.; Dallmeijer, A. Feasibility and reliability of measuring strength, sprint power, and aerobic capacity in athletes and non-athletes with cerebral palsy. Dev. Med. Child Neurol. 2012, 54, 647–653. [Google Scholar] [CrossRef]
- Stieler, E.; de Mello, M.T.; Lôbo, I.L.B.; Gonçalves, D.A.; Resende, R.; Andrade, A.G.; Lourenço, T.F.; Silva, A.A.C.; Andrade, H.A.; Guerreiro, R.; et al. Current Technologies and Practices to Assess External Training Load in Paralympic Sport: A Systematic Review. J. Sport Rehabil. 2023, 32, 635–644. [Google Scholar] [CrossRef]
- Ferreira, S.; Tucker, R.; Runciman, P.; Albertus-Kajee, Y.; Derman, W. Effects of Exercise Training on Performance and Function in Individuals with Cerebral Palsy: A Critical Review. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2016, 38, 177–193. Available online: https://www.researchgate.net/publication/311581530 (accessed on 13 March 2025).
- Miranda-Alatriste, P.V.; Colin-Ramirez, E.; Inda Icaza, P.; Ponce-Martínez, X.; Mochón, A.S.; Vázquez, N.M.; García-Arreola, B.; de los Ángeles Espinosa-Cuevas, M. Association between BMI z-score and body composition indexes with blood pressure and grip strength in school-age children: A cross-sectional study. Sci. Rep. 2024, 14, 5477. [Google Scholar] [CrossRef]
- Esteves, C.L.; Ohara, D.G.; Matos, A.P.; Ferreira, V.T.K.; Iosimuta, N.C.R.; Pegorari, M.S. Anthropometric indicators as a discriminator of sarcopenia in community-dwelling older adults of the Amazon region: A cross-sectional study. BMC Geriatr. 2020, 20, 518. [Google Scholar] [CrossRef]
- Vasold, K.L.; Parks, A.C.; Phelan, D.M.L.; Pontifex, M.B.; Pivarnik, J.M. Reliability and Validity of Commercially Available Low-Cost Bioelectrical Impedance Analysis. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 406–410. [Google Scholar] [CrossRef]
- Park, H.Y.; Jung, W.S.; Kim, J.; Hwang, H.; Kim, S.W.; An, Y.; Lee, H.; Jeon, S.; Lim, K. Effects of 2-Week Exercise Training in Hypobaric Hypoxic Conditions on Exercise Performance and Immune Function in Korean National Cycling Athletes with Disabilities: A Case Report. Int. J. Environ. Res. Public Health 2020, 17, 861. [Google Scholar] [CrossRef]
- Ramos-Parraci, C.A.; Gomez-Mazorra, M. Physical Condition Assessment and Physical Exercise Prescription; Editorial Label Universidad del Tolima: Tolima, Colombia, 2018; Available online: https://elibro.net/es/lc/unicauca/titulos/228360 (accessed on 29 March 2023).
- Storer, T.W.; Davis, J.A.; Caiozzo, V.J. Accurate Prediction of VO2(Max) in Cycle Ergometry. Med. Sci. Sports Exerc. 1990, 22, 704–712. [Google Scholar]
- Jurov, I.; Toplišek, J.; Cvijić, M. Prediction of Maximal Oxygen Consumption in Cycle Ergometry in Competitive Cyclists. Life 2023, 13, 160. [Google Scholar] [CrossRef]
- Takeda, R.; Nojima, H.; Nishikawa, T.; Okudaira, M.; Hirono, T.; Watanabe, K. Subtetanic neuromuscular electrical stimulation can maintain Wingate test performance but augment blood lactate accumulation. Eur. J. Appl. Physiol. 2023, 124, 433–444. [Google Scholar] [CrossRef]
- Furno-Puglia, V.; Paquette, M.; Bergdahl, A. Characterization of muscle oxygenation response in well-trained handcyclists. Eur. J. Appl. Physiol. 2024, 124, 3241–3251. [Google Scholar] [CrossRef]
- Matveyev, L. Periodization of Sports Training; National Institute of Physical Education and Sports: Gwalior, India, 1977. [Google Scholar]
- Matveyev, L. Fundamentals of Sports Training; Raduga: Singapore, 1983. [Google Scholar]
- García-Manzo, J.M.; Navarro-Valdivielso, M.; Ruiz-Caballero, J.A. Sports Training Planning; Editorial Gymnos: Madrid, Spain, 1995. [Google Scholar]
- Burkett, B.J.; Mellifont, R.B. Sport Science and Coaching in Paralympic Cycling. Int. J. Sports Sci. Coach. 2008, 3, 95–103. [Google Scholar] [CrossRef]
- De Groot, S.; Dallmeijer, A.; Bessems, P.; Lamberts, M.; Woude, L.; Janssen, T. Comparison of muscle strength, sprint power and aerobic capacity in adults with and without cerebral palsy. J. Rehabil. Med. 2012, 44, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Bezodis, I.N.; Cowburn, J.; Brazil, A.; Richardson, R.; Wilson, C.; Exell, T.A.; Irwin, G. A biomechanical comparison of initial sprint acceleration performance and technique in an elite athlete with cerebral palsy and able-bodied sprinters. Sports Biomech. 2020, 19, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Yanci, J.; Castagna, C.; Los Arcos, A.; Santalla, A.; Grande, I.; Figueroa, J.; Camara, J. Muscle strength and anaerobic performance in football players with cerebral palsy. Disabil. Health J. 2016, 9, 313–319. [Google Scholar] [CrossRef]
- Devereux, G.; Le Winton, H.G.; Black, J.; Beato, M. Effect of a high-intensity short-duration cycling elevation training mask on VO2max and anaerobic power. A randomized controlled trial. Biol. Sport 2022, 39, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Invernizzi, P.L.; Scurati, R.; Ceruso, R.; Altavilla, G. Removing the division into categories between cycling and para-cycling (Handbike category H) by designing a single performance and training activity. J. Hum. Sport Exerc. 2021, 16, 716–725. [Google Scholar] [CrossRef]
- Boer, P.H.; Terblanche, E. Relationship between maximal exercise parameters and individual time trial performance in elite cyclists with physical disabilities. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2014, 36, 1–10. [Google Scholar]
- Antunes, D.; Fernandes Nascimento, E.M.; Rossato, M.; da Silva, E.S.; de Lucas, R.D.; Fischer, G. Case Report: Monitoring neuromuscular fatigue through jump performance over two seasons in a cerebral palsy sprinter. Front. Sports Act. Living 2025, 7, 1558020. [Google Scholar] [CrossRef]
- Bermejo, F.; Olcina, G.; Martínez, I.; Timón, R. Effects of a HIIT protocol with functional exercises on performance and body composition. Arch. Med. Deporte 2018, 35, 386–391. Available online: https://archivosdemedicinadeldeporte.com/articulos/upload/or05_bermejo.pdf (accessed on 13 September 2023).
- American College of Sports Medicine. ACSM Manual for the Assessment and Prescription of Exercise; Paidotribo: Badalona, Spain, 2014. [Google Scholar]
- Fletcher, J.R.; Gallinger, T.; Prince, F. How Can Biomechanics Improve Physical Preparation and Performance in Paralympic Athletes? A Narrative Review. Sports 2021, 9, 89. [Google Scholar] [CrossRef]
- Sarabia, J.M.; Doménech, C.; Roche, E.; Vicente-Salar, N.; Reina, R. Anthropometrical Features of Para-Footballers According to Their Cerebral Palsy Profiles and Compared to Controls. Int. J. Environ. Res. Public Health 2020, 17, 9071. [Google Scholar] [CrossRef]
Week—HIIT Type | Sessions | Athlete A | Athlete B | Athlete C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Planned Exercise Intensity (W) | Performed Mean Exercise Intensity (W) | HR (%) | RPE | Planned Exercise Intensity (W) | Performed Mean Exercise Intensity (W) | HR (%) | RPE | Planned Exercise Intensity (W) | Performed Mean Exercise Intensity (W) | HR (%) | RPE | ||
1—Long | 1 | 123.3 (85) | 86 (59) | 170 (95) | 7 | 123.3 (85) | 86 (70) | 175 (93) | 8 | 191.3 (85) | 146 (65) | 170 (99) | 7 |
2 | 123.3 (85) | 97 (67) | 175 (98) | 7 | 123.3 (85) | 97 (79) | 186 (98) | 6 | 191.3 (85) | 149 (66) | 161 (94) | 7 | |
2—Long | 3 | 123.3 (85) | 109 (75) | 174 (97) | 8 | 123.3 (85) | 86 (70) | 177 (94) | 8 | 191.3 (85) | 153 (68) | 160 (93) | 8 |
4 | 123.3 (85) | 112 (77) | 176 (99) | 6 | 123.3 (85) | 98 (80) | 180 (95) | 8 | 191.3 (85) | 150 (67) | 166 (97) | 8 | |
3—Short | 5 | 282.3 (100) | 73 (26) | 179 (100) | 10 | 272.5 (100) | 71 (26) | 181 (96) | 8 | 473.7 (100) | 112 (24) | 164 (95) | 8 |
6 | 282.3 (100) | 83 (29) | 176 (99) | 8 | 272.5 (100) | 72 (26) | 175 (93) | 6 | 473.7 (100) | 134 (28) | 166 (97) | 8 | |
4—Short | 7 | 282.3 (100) | 113 (40) | 177 (99) | 9 | 272.5 (100) | 101 (37) | 174 (92) | 9 | 473.7 (100) | 147 (31) | 168 (98) | 9 |
8 | 282.3 (100) | 130 (46) | 179 (100) | 9 | 272.5 (100) | 112 (41) | 178 (95) | 7 | 473.7 (100) | 150 (32) | 170 (99) | 9 |
Characteristic Protocol | Athlete A | Athlete B | Athlete C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Δ | CV | Pre | Post | Δ | CV | Pre | Post | Δ | CV | |
Body Composition | ||||||||||||
Body weight (kg) | 54.8 | 54.5 | 0.6 | 0.31 | 51.4 | 51.1 | 0.5 | 0 | 72.4 | 72.1 | 0.3 | 0.21 |
BMI (kg/m2) | 22.5 | 22.3 | 0.6 | 0.31 | 19.8 | 19.7 | 0.6 | 0 | 24.7 | 24.6 | 0.4 | 0.2 |
Muscle mass (%) | 48.6 | 49.0 | 0.8 | 0.41 | 43.9 | 44.2 | 0.7 | 0 | 59.7 | 59.9 | 0.3 | 0.17 |
Body fat (%) | 9.3 | 9.0 | 3.2 | 1.64 | 10.2 | 10.0 | 1.9 | 0 | 11.1 | 11 | 0.9 | 0.45 |
Characteristic Protocol | Athlete A | Athlete B | Athlete C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Δ | CV | Pre | Post | Δ | CV | Pre | Post | Δ | CV | |
Estimated VO2max | ||||||||||||
VO2max (ml·kg−1 min−1) | 2192 | 2347 | 7.0 | 3.4 | 2128 | 2128 | 0.0 | 0.0 | 2756 | 3018 | 9.4 | 4.6 |
Max power (Wmax) | 145 | 160 | 10.3 | 4.9 | 145 | 145 | 0.0 | 0.0 | 225 | 250 | 11.1 | 5.3 |
HRmax (bpm) | 178 | 183 | 2.8 | 1.4 | 188 | 185 | 1.6 | 0.8 | 171 | 173 | 1.1 | 0.6 |
WAnT_30 s | ||||||||||||
Max power peak (Wmax) | 282.3 | 370.4 | 31.2 | 13.5 | 272.5 | 312.6 | 15 | 6.9 | 473.7 | 516.2 | 9.0 | 4.4 |
Mean power (W) | 218.4 | 312.2 | 43 | 17.7 | 226.6 | 246.6 | 9.0 | 4.2 | 388.3 | 451.3 | 16.2 | 7.5 |
Fatigue index (W/s) | 2.0 | 5.2 | 160 | 44.4 | 8.3 | 9 | 8.4 | 4.0 | 65.0 | 7.1 | 65.2 | 80.7 |
Anaerobic power (W/kg) | 5.2 | 6.8 | 30.7 | 13.3 | 5.3 | 6.1 | 15 | 7.0 | 6.7 | 7.1 | 5.9 | 2.9 |
Anaerobic capacity (W/kg) | 4.0 | 5.7 | 42.5 | 17.5 | 4.4 | 4.8 | 9.0 | 4.4 | 6.3 | 6.2 | 1.5 | 0.8 |
Athlete A 14 km Time Trial (sec) | Athlete B 14 km Time Trial (sec) | Athlete C 14 km Time Trial (sec) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Δ | CV (%) | Pre | Post | Δ | CV (%) | Pre | Post | Δ | CV (%) |
2492 | 2325 | −6.7 | 3.4 | 2486 | 2390 | −3.7 | 1.9 | 2775 | 2674 | −3.6 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasso-Quilindo, C.A.; Chalapud-Narvaez, L.M.; Garcia-Chaves, D.C.; Cristi-Montero, C.; Yañez-Sepulveda, R. Effect of 4 Weeks of High-Intensity Interval Training (HIIT) on VO2max, Anaerobic Power, and Specific Performance in Cyclists with Cerebral Palsy. J. Funct. Morphol. Kinesiol. 2025, 10, 102. https://doi.org/10.3390/jfmk10020102
Lasso-Quilindo CA, Chalapud-Narvaez LM, Garcia-Chaves DC, Cristi-Montero C, Yañez-Sepulveda R. Effect of 4 Weeks of High-Intensity Interval Training (HIIT) on VO2max, Anaerobic Power, and Specific Performance in Cyclists with Cerebral Palsy. Journal of Functional Morphology and Kinesiology. 2025; 10(2):102. https://doi.org/10.3390/jfmk10020102
Chicago/Turabian StyleLasso-Quilindo, Cristian A., Luz M. Chalapud-Narvaez, Diego C. Garcia-Chaves, Carlos Cristi-Montero, and Rodrigo Yañez-Sepulveda. 2025. "Effect of 4 Weeks of High-Intensity Interval Training (HIIT) on VO2max, Anaerobic Power, and Specific Performance in Cyclists with Cerebral Palsy" Journal of Functional Morphology and Kinesiology 10, no. 2: 102. https://doi.org/10.3390/jfmk10020102
APA StyleLasso-Quilindo, C. A., Chalapud-Narvaez, L. M., Garcia-Chaves, D. C., Cristi-Montero, C., & Yañez-Sepulveda, R. (2025). Effect of 4 Weeks of High-Intensity Interval Training (HIIT) on VO2max, Anaerobic Power, and Specific Performance in Cyclists with Cerebral Palsy. Journal of Functional Morphology and Kinesiology, 10(2), 102. https://doi.org/10.3390/jfmk10020102