Cosmic-Ray Tomography for Border Security
Abstract
:1. Introduction
2. Physical Principles of Muon Tomography
3. State-of-the-Art Cosmic Ray Tomography in Security Applications
4. Theoretical Background and Simulations
4.1. Muons at the Surface of the Earth
4.2. Physics Processes
4.2.1. Muon Interactions
4.2.2. Multiple Coulomb Scattering
4.2.3. Muon Absorption and Negative Muon Capture
4.2.4. Secondary Particles
4.2.5. Secondary Particle Interactions
Muon Interactions
Neutron Interactions
Additional Interactions
4.3. Simulation Codes
4.3.1. Muon Generators
4.3.2. Particle Transport and Detection
5. Instrumentation
5.1. Requirements for Detectors
5.2. Gas Detectors
5.2.1. Drift Tubes
5.2.2. Barrel Chambers (Drift Tubes)
5.2.3. Resistive Plate Chambers
5.2.4. The Multigap Resistive Plate Chambers
5.2.5. Gas Electron Multiplier Detectors
5.3. Solid State Detectors
5.4. Scintillators
5.4.1. Plastic Scintillating Strips: Triangular Bars
5.4.2. Plastic Scintillating Strips: Square Bars
5.4.3. Scintillating Fibres
5.4.4. Plastic Scintillator with WLS-Fibres Readout
5.5. Detectors for Secondary Particles
6. Data Reconstruction from Simulated and Real Events
6.1. Path Models and Reconstruction Algorithms
6.1.1. Point of Closest Approach
6.1.2. Straight Line Path
6.1.3. Most Likely Path
6.1.4. Clustering Algorithm
6.1.5. Angle Statistic Reconstruction
6.1.6. Filtered Back Projection
6.1.7. Algebraic Reconstruction Technique
6.1.8. Probabilistic Algorithms
6.2. Machine Learning Techniques
7. Outstanding Issues of CRT in Security Applications
7.1. Statistical Limitation
7.2. Low-Z Identification Challenges
7.3. Muon Momentum Estimation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kar, D.; Spanjers, J. Transnational Crime and the Developing World; Global Financial Integrity: Washington, DC, USA, 2017; pp. 53–59. [Google Scholar]
- Transnational Alliance to Combat Illicit Trade (TRACIT). 2022. Available online: https://www.tracit.org/ (accessed on 23 December 2022).
- Soudijn, M.; Reuter, P. Cash and carry: The high cost of currency smuggling in the drug trade. Crime Law Soc. Change 2016, 66, 271–290. [Google Scholar] [CrossRef]
- Downes, R.; Hobbs, C.; Salisbury, D. Combating nuclear smuggling? Exploring drivers and challenges to detecting nuclear and radiological materials at maritime facilities. Nonprolif. Rev. 2019, 26, 83–104. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs and Drug Addiction. In European Drug Report—Trends and Developments; Publications Office of the European Union: Luxembourg, 2021. [CrossRef]
- Europol. 476 Potential Victims of Human Trafficking Identified during the Large-Scale Joint Action Days 2019. 2019. Available online: https://www.europol.europa.eu/media-press/newsroom/news/476-potential-victims-of-human-trafficking-identified-during-large-scale-joint-action-days-2019 (accessed on 23 December 2022).
- ABC News. Undercover DHS Tests Find Security Failures at US Airports. 2015. Available online: https://abcnews.go.com/US/exclusive-undercover-dhs-tests-find-widespread-security-failures/story?id=31434881 (accessed on 23 December 2022).
- Arodzero, A.; Boucher, S.; Hartzell, J.; Kutsaev, S.V.; Lanza, R.C.; Palermo, V.; Vinogradov, S.; Ziskin, V. High speed, low dose, intelligent X-ray cargo inspection. In Proceedings of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, CA, USA, 31 October–7 November 2015; pp. 1–7. [Google Scholar]
- Kouzes, R.T. Neutron and gamma ray detection for border security applications. In Proceedings of the 2010 1st International Nuclear & Renewable Energy Conference (INREC), Amman, Jordan, 21–24 March 2010; pp. 1–3. [Google Scholar] [CrossRef]
- Runkle, R.C.; Mercier, T.M.; Anderson, K.K.; Carlson, D.K. Point source detection and characterization for vehicle radiation portal monitors. IEEE Trans. Nuclear Sci. 2005, 52, 3020–3025. [Google Scholar] [CrossRef]
- Borozdin, K.N.; Hogan, G.E.; Morris, C.; Priedhorsky, W.C.; Saunders, A.; Schultz, L.J.; Teasdale, M.E. Radiographic imaging with cosmic-ray muons. Nature 2003, 422, 277. [Google Scholar] [CrossRef]
- Zyla, P.; Barnett, R.; Beringer, J.; Dahl, O.; Dwyer, D.; Groom, D.; Lin, C.J.; Lugovsky, K.; Pianori, E.; Robinson, D.J.; et al. Review of particle physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Bonechi, L.; D’Alessandro, R.; Giammanco, A. Atmospheric muons as an imaging tool. Rev. Phys. 2020, 5, 100038. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Muon Imaging: Present Status and Emerging Applications; IAEA TECDOC 2012; IAEA: Vienna, Austria, 2022. [Google Scholar]
- Priedhorsky, W.C.; Borozdin, K.N.; Hogan, G.E.; Morris, C.; Saunders, A.; Schultz, L.J.; Teasdale, M.E. Detection of high-Z objects using multiple scattering of cosmic ray muons. Rev. Sci. Instrum. 2003, 74, 4294–4297. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.decisionsciences.com (accessed on 23 December 2022).
- Blanpied, G.; Kumar, S.; Dorroh, D.; Morgan, C.; Blanpied, I.; Sossong, M.; McKenney, S.; Nelson, B. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials. Nucl. Instrum. Meth. Phys. Res. A 2015, 784, 352–358. [Google Scholar] [CrossRef]
- Harel, A.; Yaish, D. Lingacom muography. Phil. Trans. R. Soc. A 2018, 377, 0133. [Google Scholar] [CrossRef] [Green Version]
- Checchia, P.; Benettoni, M.; Bettella, G.; Conti, E.; Cossutta, L.; Furlan, M.; Gonella, F.; Klinger, J.; Montecassiano, F.; Nebbia, G.; et al. INFN muon tomography demonstrator: Past and recent results with an eye to near-future activities. Phil. Trans. R. Soc. A 2018, 377, 0065. [Google Scholar] [CrossRef] [Green Version]
- Riggi, F.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Bonanno, G.; Bonanno, D.L.; Bongiovanni, D.; Fallica, P.G.; Gallo, G.; Garozzo, S.; et al. The Muon Portal Project: Commissioning of the full detector and first results. Nucl. Instrum. Meth. Phys. Res. A 2018, 912, 16–19. [Google Scholar] [CrossRef]
- Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.L.; Erlandson, A.; Gallant, G.; et al. A plastic scintillator-based muon tomography system with an integrated muon spectrometer. Nucl. Inst. Meth. A 2015, 798, 12. [Google Scholar] [CrossRef] [Green Version]
- Kamaev, O.; Rand, E.T.; van der Ende, B.M.; Thompson, M.; Livingstone, S.; Golovko, V.V. Complementary non-destructive detection of nuclear materials with passive neutron and gamma-ray detectors, and a large-volume muon tomography system. Nucl. Inst. Meth. A 2019, 944, 162503. [Google Scholar] [CrossRef]
- del Arbol, P.M.R.; Alonso, A.O.; Díez, C.; Garcıa, P.G. Applications of Muography to the Industrial Sector. J. Adv. Instrum. Sci. 2022, 2022. [Google Scholar] [CrossRef]
- Arbol, P.M.R.D.; Garcia, P.G.; Gonzalez, C.D.; OrioAlonso, A. Non-destructive testing of industrial equipment using muon radiography. Philos. Trans. R. Soc. A 2019, 377, 20180054. [Google Scholar] [CrossRef] [Green Version]
- Baesso, P.; Cussans, D.; Davies, J.; Glaysher, P.; Thomay, C.; Vassallo, C.; Velthuis, J.; Quillin, S.; Robertson, S.; Steer, C. High resolution muon tracking with resistive plate chambers. J. Instrum. 2012, 7, P11018. [Google Scholar] [CrossRef] [Green Version]
- Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.J.; Burns, J.; Steer, C.; Quillin, S. A high resolution resistive plate chamber tracking system developed for cosmic ray muon tomography. J. Instrum. 2013, 8, P08006. [Google Scholar] [CrossRef]
- Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.J.; Burns, J.; Quillin, S.; Steer, C.; Stapleton, M. High resolution muon tracking with resistive plate chambers for detection of special nuclear material. In Proceedings of the International Conference on Calorimetry for the High Energy Frontier, Paris, France, 22–25 April 2013; pp. 420–424. [Google Scholar]
- Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J. Toward a RPC-based muon tomography system for cargo containers. J. Instrum. 2014, 9, C10041. [Google Scholar] [CrossRef]
- Pan, X.Y.; Zheng, Y.F.; Zeng, Z.; Wang, X.W.; Cheng, J.P. Experimental validation of material discrimination ability of muon scattering tomography at the TUMUTY facility. Nuclear Sci. Tech. 2019, 30, 120. [Google Scholar] [CrossRef]
- Yifan, Z.; Zhi, Z.; Ming, Z.; Xuewu, W.; Ziran, Z. Discrimination of drugs and explosives in cargo inspections by applying machine learning in muon tomography. High Power Laser Part. Beams 2018, 30, 086002. [Google Scholar] [CrossRef]
- Preziosi, E.; Arcieri, F.; Caltabiano, A.; Camarri, P.; Casagrande, S.; Cavicchioni, D.; Danza, F.; Fabrizi, E.; Fabrizi, M.; Festa, G.; et al. TECNOMUSE: A novel, RPC-based, muon tomography scanner for the control of container terminals. J. Phys. Conf. Ser. 2020, 1548, 012021. [Google Scholar] [CrossRef]
- Cianchi, A.; Andreani, C.; Camarri, P.; Fazi, L.; Fornaro, C.; Preziosi, E.; Prioriello, A.; Santonico, R.; Scacco, V.; Scatigno, C.; et al. Evaluation of the imaging performance of the TECNOMUSE muon tomograph and its feasibility in a real scenario. Eur. Phys. J. Plus 2021, 136, 1–11. [Google Scholar] [CrossRef]
- Molière, Z. Theorie der Streuung schneller geladener Teilchen II Mehrfach- und Vielfachstreuung. Z. Naturforsch. 1948, 3a, 78–97. (In German) [Google Scholar] [CrossRef]
- Lewis, H.W. Multiple Scattering in an Infinite Medium. Phys. Rev. 1950, 78, 526–529. [Google Scholar] [CrossRef]
- Blackwell, T.B. Detecting Special Nuclear Material Using Muon-Induced Neutron Emission. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2015. [Google Scholar]
- Blackwell, T.B.; Kudryavtsev, V.A. Development of a 3D muon disappearance algorithm for muon scattering tomography. J. Instrum. 2015, 10, T05006. [Google Scholar] [CrossRef]
- Bikit, I.; Mrdja, D.; Bikit, K.; Slivka, J.; Jovancevic, N.; Oláh, L.; Hamar, G.; Varga, D. Novel approach to imaging by cosmic-ray muons. EPL (Europhys. Lett.) 2016, 113, 58001. [Google Scholar] [CrossRef]
- Bikit, K.; Mrdja, D.; Bikit, I.; Veskovic, M. Investigation of cosmic-ray muon induced processes by the MIREDO facility. Appl. Radiat. Isot. 2014, 87, 77–80. [Google Scholar] [CrossRef]
- Mrdja, D.; Bikit, I.; Bikit, K.; Slivka, J.; Hansman, J.; Oláh, L.; Varga, D. First cosmic-ray images of bone and soft tissue. EPL (Europhys. Lett.) 2016, 116, 48003. [Google Scholar] [CrossRef]
- Galgóczi, G.; Mrdja, D.; Bikit, I.; Bikit, K.; Slivka, J.; Hansman, J.; Oláh, L.; Hamar, G.; Varga, D. Imaging by muons and their induced secondary particles—A novel technique. J. Instrum. 2020, 15, C06014. [Google Scholar] [CrossRef]
- Ji, X.-T.; Luo, S.-Y.; Huang, Y.-H.; Zhu, K.; Zhu, J.; Peng, X.-Y.; Xiao, M.; Wang, X.-D. A novel 4D resolution imaging method for low and medium atomic number objects at the centimeter scale by coincidence detection technique of cosmic-ray muon and its secondary particles. Nuclear Sci. Tech. 2022, 33, 2210–3147. [Google Scholar] [CrossRef]
- Luo, S.Y.; Huang, Y.H.; Ji, X.T.; He, L.; Xiao, W.C.; Luo, F.J.; Feng, S.; Xiao, M.; Wang, X.D. Hybrid model for muon tomography and quantitative analysis of image quality. Nuclear Sci. Tech. 2022, 33, 81. [Google Scholar] [CrossRef]
- Reidy, J.J.; Hutson, R.L.; Springer, K. Use of Muonic X Rays for Tissue Analysis. IEEE Trans. Nuclear Sci. 1975, 22, 1780–1783. [Google Scholar] [CrossRef]
- Reidy, J.J.; Hutson, R.L.; Daniel, H.; Springer, K. Use of muonic x-rays for nondestructive analysis of bulk samples for low Z constituents. Anal. Chem. 1978, 50, 40–44. [Google Scholar] [CrossRef]
- Terada, K.; Ninomiya, K.; Osawa, T.; Tachibana, S.; Miyake, Y.; Kubo, M.K.; Kawamura, N.; Higemoto, W.; Tsuchiyama, A.; Ebihara, M.; et al. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam. Sci. Rep. 2014, 4, 5072. [Google Scholar] [CrossRef] [Green Version]
- Borozdin, K.N.; Morris, C.; Klimenko, A.V.; Spaulding, R.; Bacon, J. Passive imaging of SNM with cosmic-ray generated neutrons and gamma-rays. In Proceedings of the IEEE Nuclear Science Symposium & Medical Imaging Conference, Knoxville, TN, USA, 30 October–6 November 2010; pp. 3864–3867. [Google Scholar] [CrossRef]
- Guardincerri, E.; Bacon, J.; Borozdin, K.; Matthew Durham, J.; Fabritius II, J.; Hecht, A.; Milner, E.C.; Miyadera, H.; Morris, C.L.; Perry, J.; et al. Detecting special nuclear material using muon-induced neutron emission. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 789, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Pérez Prada, M.; Barnes, S.; Stephan, M. Analysis of Secondary Particles as a Compliment to Muon Scattering Measurements. Instruments 2022, 6, 66. [Google Scholar] [CrossRef]
- Hall, J.; Asztalos, S.; Biltoft, P.; Church, J.; Descalle, M.A.; Luu, T.; Manatt, D.; Mauger, G.; Norman, E.; Petersen, D.; et al. The Nuclear Car Wash: Neutron interrogation of cargo containers to detect hidden SNM. Nuclear Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2007, 261, 337–340. [Google Scholar] [CrossRef]
- Micklich, B.J.; Smith, D.L. Nuclear materials detection using high-energy γ-rays. Nuclear Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2005, 241, 782–786. [Google Scholar] [CrossRef]
- Danagoulian, A.; Bertozzi, W.; Hicks, C.L.; Klimenko, A.V.; Korbly, S.E.; Ledoux, R.J.; Wilson, C.M. Prompt neutrons from photofission and its use in homeland security applications. In Proceedings of the 2010 IEEE International Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 8–10 November 2010; pp. 379–384. [Google Scholar] [CrossRef]
- Fetter, S.; Frolov, V.A.; Miller, M.; Mozley, R.; Prilutsky, O.F.; Rodionov, S.N.; Sagdeev, R.Z. Detecting nuclear warheads. Sci. Glob. Secur. 1990, 1, 225–253. [Google Scholar] [CrossRef]
- Heck, D.; Knapp, J.; Capdevielle, J.N.; Schatz, G.; Thouw, T. CORSIKA: A Monte Carlo code to Simulate Extensive Air Showers; FZKA-6019; Forschungszentrum Karlsruhe GmbH: Karlsruhe, Germany, 1998. [Google Scholar]
- Böhlen, T.T.; Cerutti, F.; Chin, M.P.W.; Fassò, A.; Ferrari, A.; Ortega, P.G.; Mairani, A.; Sala, P.R.; Smirnov, G.; Vlachoudis, V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets 2014, 120, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.; Sala, P.R.; Fassò, A.; Ranft, J. FLUKA: A Multi-Particle Transport Code; Technical report; Stanford University: Stanford, CA, USA, 2005; CERN-2005-10, INFN/TC_05/11, SLAC-R-773. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.J.N.I.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.J.N.I.; et al. Recent developments in GEANT4. Nucl. Instrum. Meth. Phys. Res. A 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Hagmann, C.; Lange, D.; Verbeke, J.; Wright, D. Cosmic-Ray Shower Library (CRY); Technical report; UCRL-TM-229453; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2012. [Google Scholar]
- Waters, L. (Ed.) MCNPX User’s Manual; Version 2.5.0; Los Alamos National Laboratory: Los Alamos, NM, USA, 2005; LA-CP-05-0369. [Google Scholar]
- Gaisser, T.K. Cosmic Rays and Particle Physics; Cambridge University Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Blackwell, T.B.; Kudryavtsev, V.A. Simulation study into the identification of nuclear materials in cargo containers using cosmic rays. J. Instrum. 2015, 10, T04003. [Google Scholar] [CrossRef]
- Richardson, M. Cosmic ray Background Estimations in Large Liquid Argon Detectors for Proton Decay via p→K+ and νe appearance from νμ Beams. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2016. [Google Scholar]
- Woodward, D. Simulations of Cosmic Muons and Background Radiations for Muon Tomography and Underground Experiments. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2018. [Google Scholar]
- Available online: https://silentborder.eu (accessed on 23 December 2022).
- Tang, A.; Horton-Smith, G.; Kudryavtsev, V.A.; Tonazzo, A. Muon simulations for Super-Kamiokande, KamLAND, and CHOOZ. Phys. Rev. D 2006, 74, 053007. [Google Scholar] [CrossRef] [Green Version]
- Guan, M.; Chu, M.C.; Cao, J.; Luk, K.B.; Yang, C. A parametrization of the cosmic-ray muon flux at sea-level. arXiv 2015, arXiv:1509.06176. [Google Scholar]
- Pagano, D.; Bonomi, G.; Donzella, A.; Zenoni, A.; Zumerle, G.; Zurlo, N. EcoMug: An Efficient COsmic MUon Generator for cosmic-ray muon applications. Nucl. Instrum. Meth. Phys. Res. A 2021, 1014, 165732. [Google Scholar] [CrossRef]
- Biallass, P.; Hebbeker, T. Parametrization of the Cosmic Muon Flux for the Generator CMSCGEN. arXiv 2009, arXiv:0907.5514. [Google Scholar]
- Antonioli, P.; Ghetti, G.; Korolkova, E.V.; Kudryavtsev, V.A.; Sartorelli, G. A Three-Dimensional Code for Muon Propagation through the Rock: MUSIC. Astropart. Phys. 1997, 7, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V.A. Muon simulation codes MUSIC and MUSUN for underground physics. Comput. Phys. Commun. 2009, 180, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Koehne, J.H.; Frantzen, K.; Schmitz, M.; Fuchs, T.; Rhode, W.; Chirkin, D.; Becker Tjus, J. PROPOSAL: A tool for propagation of charged leptons. Comput. Phys. Commun. 2013, 184, 2070–2090. [Google Scholar] [CrossRef]
- Durham, J.; Guardincerri, E.; Morris, C.; Bacon, J.; Fabritius, J.; Fellows, S.; Poulson, D.; Plaud-Ramos, K.; Renshaw, J. Tests of cosmic ray radiography for power industry applications. AIP Adv. 2015, 5, 067111. [Google Scholar] [CrossRef] [Green Version]
- Pesente, S.; Vanini, S.; Benettoni, M.; Bonomi, G.; Calvini, P.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G.; Squarcia, S.; et al. First results on material identification and imaging with a large-volume muon tomography prototype. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 604, 738–746. [Google Scholar] [CrossRef]
- Hohlmann, M.; Gnanvo, K.; Grasso, L.; Locke, J.; Quintero, A.; Mitra, D. Design and construction of a first prototype muon tomography system with GEM detectors for the detection of nuclear contraband. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 25–31 October 2009; pp. 971–975. [Google Scholar]
- Keizer, F.; Gorbatch, A.; Parker, M.; Steer, C.; Wotton, S. A compact, high resolution tracker for cosmic ray muon scattering tomography using semiconductor sensors. J. Instrum. 2018, 13, P10028. [Google Scholar] [CrossRef] [Green Version]
- Glasser, V.; Lipton, R. Data Analysis and Detector Troubleshooting for the Silicon Muon Scanner; Technical Report FERMILAB-PUB-18-503-E, FNAL; Fermi National Accelerator Laboratory: Batavia, IL, USA, 2018. [Google Scholar]
- Anbarjafari, G.; Anier, A.; Avots, E.; Georgadze, A.; Hektor, A.; Kiisk, M.; Kutateladze, M.; Lepp, T.; Mägi, M.; Pastsuk, V.; et al. Atmospheric ray tomography for low-Z materials: Implementing new methods on a proof-of-concept tomograph. arXiv 2021, arXiv:2102.12542. [Google Scholar] [CrossRef]
- Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Bonanno, D.; Bonanno, G.; Bongiovanni, D.; Fallica, P.; Garozzo, S.; Grillo, A.; La Rocca, P.; et al. The muon portal project: Design and construction of a scanning portal based on muon tomography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 845, 322–325. [Google Scholar] [CrossRef]
- Park, C.; Kim, K.B.; Chung, Y.S.; Baek, M.K.; Kang, I.S.; Lee, S.; Chung, H.; Chung, Y.H. Feasibility study of a prototype muon tomography system based on a plastic scintillator and WLS fibers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2022, 1040, 167081. [Google Scholar] [CrossRef]
- Anger, H.O. Scintillation camera. Rev. Sci. Instrum. 1958, 29, 27–33. [Google Scholar] [CrossRef]
- Ely, J.; Siciliano, E.; Kouzes, R. Comparison of NaI(Tl) scintillators and high purity germanium for vehicle portal monitor applications. In Proceedings of the IEEE Symposium Conference Record Nuclear Science 2004, Rome, Italy, 16–22 October 2004; Volume 3, pp. 1584–1587. [Google Scholar] [CrossRef]
- Bacon, J.D.; Borozdin, K.N.; Fabritius, J.M., II; Morris, C.; Perry, J.O. Muon Induced Fission Neutrons in Coincidence with Muon Tomography; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2013. [Google Scholar] [CrossRef]
- Kouzes, R.T.; Siciliano, E.R.; Ely, J.H.; Keller, P.E.; McConn, R.J. Passive neutron detection for interdiction of nuclear material at borders. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 584, 383–400. [Google Scholar] [CrossRef] [Green Version]
- Grupen, C.; Buvat, I. Handbook of Particle Detection and Imaging; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef] [Green Version]
- Comparison of PVT and NaI(Tl) scintillators for vehicle portal monitor applications. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 550, 647–674. [CrossRef]
- McMillan, J.E.; Cole, A.J.; Kirby, A.; Marsden, E. Thermal neutron scintillators using unenriched boron nitride and zinc sulfide. J. Phys. Conf. Ser. 2015, 620, 012011. [Google Scholar] [CrossRef] [Green Version]
- Dumazert, J.N.; Coulon, R.; Hamel, M.; Carrel, F.; Sguerra, F.; Normand, S.; Méchin, L.; Bertrand, G.H.V. Gadolinium-loaded Plastic Scintillators for Thermal Neutron Detection using Compensation. IEEE Trans. Nuclear Sci. 2016, 63, 1551–1564. [Google Scholar] [CrossRef]
- Zaitseva, N.; Glenn, A.; Martinez, H.P.; Carman, L.; Pawełczak, I.; Faust, M.; Payne, S. Pulse shape discrimination with lithium-containing organic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 729, 747–754. [Google Scholar] [CrossRef]
- Pawełczak, I.A.; Glenn, A.M.; Martinez, H.P.; Carman, M.L.; Zaitseva, N.P.; Payne, S.A. Boron-loaded plastic scintillator with neutron-γ pulse shape discrimination capability. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 751. [Google Scholar] [CrossRef]
- Pozzi, S.; Clarke, S.; Paff, M.; Di Fulvio, A.; Kouzes, R. Comparative neutron detection efficiency in He-3 proportional counters and liquid scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 929, 107–112. [Google Scholar] [CrossRef]
- Bandieramonte, M.; Antonuccio-Delogu, V.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Riggi, S.; et al. Clustering analysis for muon tomography data elaboration in the Muon Portal project. J. Phys. Conf. Ser. 2015, 608, 012046. [Google Scholar] [CrossRef]
- Zeng, W.; Zeng, M.; Pan, X.; Zeng, Z.; Ma, H.; Cheng, J. Principle study of image reconstruction algorithms in muon tomography. J. Instrum. 2020, 15, T02005. [Google Scholar] [CrossRef] [Green Version]
- Georgadze, A.; Kiisk, M.; Mart, M.; Avots, E.; Anbarjafari, G. Method and Apparatus for Detection and/or Identification of Materials and of Articles Using Charged Particles. US Patent Application 16/977,293, 6 September 2019. [Google Scholar]
- Siddon, R.L. Fast calculation of the exact radiological path for a three-dimensional CT array. Med. Phys. 1985, 12, 252–255. [Google Scholar] [CrossRef]
- Williams, D.C. The most likely path of an energetic charged particle through a uniform medium. Phys. Med. Biol. 2004, 49, 2899. [Google Scholar] [CrossRef] [Green Version]
- Chatzidakis, S.; Liu, Z.; Hayward, J.P.; Scaglione, J.M. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography. J. Appl. Phys. 2018, 123, 124903. [Google Scholar] [CrossRef] [Green Version]
- Oyewole, G.J.; Thopil, G.A. Data clustering: Application and trends. Artif. Intell. Rev. 2022, 1–37. [Google Scholar] [CrossRef]
- Thomay, C.; Velthuis, J.J.; Baesso, P.; Cussans, D.; Morris, P.; Steer, C.; Burns, J.; Quillin, S.; Stapleton, M. A binned clustering algorithm to detect high-Z material using cosmic muons. J. Instrum. 2013, 8, P10013. [Google Scholar] [CrossRef]
- Stapleton, M.; Burns, J.; Quillin, S.; Steer, C. Angle statistics reconstruction: A robust reconstruction algorithm for muon scattering tomography. J. Instrum. 2014, 9, P11019. [Google Scholar] [CrossRef]
- Chu, G.; Tam, K.C. Three-dimensional imaging in the positron camera using Fourier techniques. Phys. Med. Biol. 1977, 22, 245. [Google Scholar] [CrossRef]
- Yang, G.; Clarkson, T.; Gardner, S.; Ireland, D.; Kaiser, R.; Mahon, D.; Jebali, R.A.; Shearer, C.; Ryan, M. Novel muon imaging techniques. Philos. Trans. R. Soc. A 2019, 377, 20180062. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.; Bender, R.; Herman, G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 1970, 29, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarz, S. Anganaherte Auflosung yon Systemen linearer Gleichungen. Bull. Acad. Polon Sci. Lett. A 1937, 355. [Google Scholar]
- Liu, Z.; Chatzidakis, S.; Scaglione, J.M.; Liao, C.; Yang, H.; Hayward, J.P. Muon tracing and image reconstruction algorithms for cosmic ray muon computed tomography. IEEE Trans. Image Process. 2018, 28, 426–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, L.; Blanpied, G.; Borozdin, K.; Fraser, A.; Klimenko, A.; Hengartner, N.; Morris, C.; Orum, C.; Sossong, M. ML/EM reconstruction algorithm for cosmic ray muon tomography. In Proceedings of the 2006 IEEE Nuclear Science Symposium Conference Record, San Diego, CA, USA, 29 October–4 November 2006; Volume 4, pp. 2574–2577. [Google Scholar]
- Wang, G.; Ye, J.C.; Mueller, K.; Fessler, J.A. Image reconstruction is a new frontier of machine learning. IEEE Trans. Med. Imaging 2018, 37, 1289–1296. [Google Scholar] [CrossRef]
- Yang, G.; Ireland, D.; Kaiser, R.; Mahon, D. Machine Learning for Muon Imaging. In Proceedings of the International Conference on Brain Inspired Cognitive Systems, Xi’an, China, 7–8 July 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 808–817. [Google Scholar] [CrossRef]
- Stocki, T.; Warren, C.; Magill, M.; Morgan, B.; Smith, J.; Ong, D.; Anghel, V.; Armitage, J.; Botte, J.; Boudjemline, K.; et al. Machine learning for the cosmic ray inspection and passive tomography project (CRIPT). In Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, USA, 27 October–3 November 2012; pp. 91–94. [Google Scholar]
- Thomay, C.; Velthuis, J.J.; Baesso, P.; Cussans, D.; Steer, C.; Burns, J.; Quillin, S.; Stapleton, M. A Novel Markov Random Field-Based Clustering Algorithm to Detect High-Z Objects With Cosmic Rays. IEEE Trans. Nuclear Sci. 2015, 62, 1837–1848. [Google Scholar] [CrossRef]
- Frazão, L.; Velthuis, J.; Thomay, C.; Steer, C. Discrimination of high-Z materials in concrete-filled containers using muon scattering tomography. J. Instrum. 2016, 11, P07020. [Google Scholar] [CrossRef] [Green Version]
- Weekes, M.; Alrheli, A.; Barker, D.; Kikoła, D.; Kopp, A.K.; Mhaidra, M.; Stowell, J.; Thompson, L.; Velthuis, J.J. Material identification in nuclear waste drums using muon scattering tomography and multivariate analysis. J. Instrum. 2021, 16, P05007. [Google Scholar] [CrossRef]
- Aydin, G. Prediction of Muon Energy using Deep Neural Network with Multiple Coulomb Scattering Data. El-Cezeri J. Sci. Eng. 2022, 9, 975–987. [Google Scholar]
- Sehgal, R.; Shinde, A.; Pant, L.; Nayak, B. Application of Machine learning in Muon Tomography Raman Sehgal1, Aniket Shinde2, LM Pant1, and BK Nayak1. In Proceedings of the DAE Symposium on Nuclear Physics, Lucknow, India, 23–27 December 2019; Volume 64, p. 848. [Google Scholar]
- Cuéllar, L.; Borozdin, K.N.; Green, J.A.; Hengartner, N.W.; Morris, C.; Schultz, L.J. Soft cosmic ray tomography for detection of explosives. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 25–31 October 2009; pp. 968–970. [Google Scholar] [CrossRef]
- Oláh, L.; Tanaka, H.; Suenaga, H.; Miyamoto, S.; Galgóczi, G.; Hamar, G.; Varga, D. Development of Machine Learning-Assisted Spectra Analyzer for the NEWCUT Muon Spectrometer. J. Adv. Instrum. Sci. 2022, 2022, 264. [Google Scholar] [CrossRef]
- Vanini, S.; Calvini, P.; Checchia, P.; Rigoni Garola, A.; Klinger, J.; Zumerle, G.; Bonomi, G.; Donzella, A.; Zenoni, A. Muography of different structures using muon scattering and absorption algorithms. Phil. Trans. R. Soc. A 2018, 377, 0051. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.; Chatzidakis, S. A Cosmic Ray Muon Spectrometer Using Pressurized Gaseous Cherenkov Radiators. In Proceedings of the 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Piscataway, NJ, USA, 16–23 October 2021. [Google Scholar] [CrossRef]
- Marteau, J.; de Bremond d’Ars, J.; Gibert, D.; Jourde, K.; Gardien, S.; Girerd, C.; Ianigro, J.C. Implementation of sub-nanosecond time-to-digital convertor in field-programmable gate array: Applications to time-of-flight analysis in muon radiography. Meas. Sci. Technol. 2014, 25, 035101. [Google Scholar] [CrossRef] [Green Version]
- Astier, P.; Cardini, A.; Cousins, R.D.; Letessier-Selvon, A.; Popov, B.A.; Vinogradova, T. Kalman filter track fits and track breakpoint analysis. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2000, 450, 138–154. [Google Scholar] [CrossRef] [Green Version]
- Ankowski, A.; Antonello, M.; Aprili, P.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Benetti, P.; Borio di Tigliole, A.; et al. Measurement of through-going particle momentum by means of multiple scattering with the ICARUS T600 TPC. Eur. Phys. J. C 2006, 48, 667–676. [Google Scholar] [CrossRef]
Transnational Crime | Estimated Annual Value (USD) |
---|---|
Drug Trafficking [1] | 426–652 billion |
Human Trafficking [1] | 150.2 billion |
Arms and Weapons Trafficking [1] | 1.7–3.5 billion |
Cultural Property [1] | 1.2–1.6 billion |
Counterfeit and Pirated Goods [1] | 923–1130 billion |
Illicit Trade in Tobacco Products [2] | 40 billion |
Alcohol [2] | 25.8% of all global consumption |
Illicit Trade in Pharmaceuticals [2] | 200 billion |
Illicit Trade in Precious Metals and Gemstones [2] | 5–10 billion |
Bulk Cash Smuggling [3] | Unknown |
Nuclear and Radioactive Materials Contraband [4] | Unknown |
Research Institution (Country) | Detection Technique | Ref. |
---|---|---|
Los Alamos National Laboratory (US) | Drift tubes | [15] |
Lingacom Ltd. (IL) | Drift tubes | [18] |
INFN, Padova (IT) | Barrel chambers (drift tubes) | [19] |
Bristol University and AWE (UK) | Resistive plate chambers | [28] |
Tsinghua University (CN) | Multi-gap resistive plate chambers | [29] |
Florida Institute of Technology (US) | GEM detectors | [74] |
CRIPT (CA) | Plastic scintillating strips | [21] |
Muon Portal Project (IT) | Plastic scintillating strips | [78] |
South Korean institutions (KR) | Plastic scintillator and WLS fibres | [79] |
GScan OU and University of Tartu (EE) | Scintillating fibres | [77] |
University of Cambridge and St. Mary’s University (UK) | Silicon microstrip detectors | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnes, S.; Georgadze, A.; Giammanco, A.; Kiisk, M.; Kudryavtsev, V.A.; Lagrange, M.; Pinto, O.L. Cosmic-Ray Tomography for Border Security. Instruments 2023, 7, 13. https://doi.org/10.3390/instruments7010013
Barnes S, Georgadze A, Giammanco A, Kiisk M, Kudryavtsev VA, Lagrange M, Pinto OL. Cosmic-Ray Tomography for Border Security. Instruments. 2023; 7(1):13. https://doi.org/10.3390/instruments7010013
Chicago/Turabian StyleBarnes, Sarah, Anzori Georgadze, Andrea Giammanco, Madis Kiisk, Vitaly A. Kudryavtsev, Maxime Lagrange, and Olin Lyod Pinto. 2023. "Cosmic-Ray Tomography for Border Security" Instruments 7, no. 1: 13. https://doi.org/10.3390/instruments7010013
APA StyleBarnes, S., Georgadze, A., Giammanco, A., Kiisk, M., Kudryavtsev, V. A., Lagrange, M., & Pinto, O. L. (2023). Cosmic-Ray Tomography for Border Security. Instruments, 7(1), 13. https://doi.org/10.3390/instruments7010013