Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO)
Abstract
:1. Instruments for Direct Detection of Cosmic Rays in Space
2. Frontier Physics in Charged Cosmic Rays
3. Design for an Antimatter Large Acceptance Detector In Orbit (ALADInO)
- Exploit the CR isotropy with a novel detector geometry to overcome the limitations in acceptance for telescopic configurations of the spectrometers as used in PAMELA, AMS-01, and AMS-02;
- Improve the particle detection and identification capabilities with technological upgrades of well-established and reliable space qualified technologies.
ALADInO | |
---|---|
Spectrometer acceptance | >10 m sr |
Calorimeter acceptance | 9 m sr |
Spectrometer MDR | >20 TV |
Combined acceptance | 3 m sr |
Calorimeter depth | 61 X – 3.5 |
Calorimeter energy resolution | 25% – 35% (h) 2% () |
e/p separation | > |
Time-of-flight resolution | <100 ps |
Tracker spatial resolution | <5 m |
Detector weight | <6.5 t |
Power consumption | ∼3 kW |
Readout channels | ∼2 M |
Bandwidth | ∼50 Mbps |
Preferred orbit | around Sun–Earth L2 |
Mission operation time | >5 yr |
3.1. Expected Performances for Operations of ALADInO in L2
3.1.1. Electrons and Positrons
3.1.2. Antiprotons
3.1.3. Antideuteron and Antihelium
4. ALADInO Technologies
4.1. Spectrometer
4.1.1. Superconducting Magnet
4.1.2. Tracker
4.1.3. Possible Improvements of the ALADInO Tracker
Timing Layers
Pixel Technology Monolithic Active Pixel Sensors
4.2. Calorimeter
- Ensure a nearly isotropic response to particles entering from different directions, thus maximizing the detector acceptance;
- Provide a 3D imaging reconstruction of the shower topology to accurately measure the energy of the primary CR for both electromagnetic and hadronic showers and to efficiently separate between electron- and hadron-initiated showers.
4.3. Time-of-Flight (ToF)
4.4. Power Budget
4.5. Mass Budget
5. Prospects to Enable the ALADInO Mission
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASIC | Application-Specific Integrated Circuit |
CFRP | Carbon Fiber Reinforced Polymer |
CsI | Cesium Iodide |
CMOS | Complementary metal-oxide-semiconductor |
CR | Cosmic Rays |
DAQ | Data Acquisition |
DM | Dark Matter |
FEE | Front-End Electronics |
FWHM | Full Width at Half Maximum |
FPGA | Field Programmable Gate Array |
GPU | Graphics Processing Unit |
HTS | High Temperature Superconductors |
ISS | International Space Station |
L2 | Earth–Sun Lagrange Point 2 |
LGAD | Low-Gain Avalanche Diode |
LYSO | Lutetium Yttrium Orthosilicate |
MAPS | Monolithic Active Pixel Sensors |
MDR | Maximum Detectable Rigidity |
MIP | Minimum Ionizing Particles |
MLI | Multilayer Insulation |
MQE | Minimum Quenching Energy |
MRI | Magnetic Resonance Imaging |
PMT | Photomultiplier Tube |
ReBCO | Rare-earth Barium Copper Oxide |
R&D | Research and Development |
SiPM | Silicon Photomultiplier |
SR2S | Space Radiation Superconducting Shield |
ToF | Time-of-flight |
TRL | Technology Readiness Level |
UFSD | Ultra-Fast Silicon Diode |
Appendix A. AMS-02 Sensitivity to Antideuterium
Appendix B. Transition Radiation Detector
References
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef][Green Version]
- Adriani, O.; Barbarino, G.; Bazilevskaya, G.; Bellotti, R.; Boezio, M.; Bogomolov, E.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; et al. The PAMELA Mission: Heralding a new era in precision cosmic ray physics. Phys. Rep. 2014, 544, 323–370. [Google Scholar] [CrossRef]
- Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; et al. The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part I–results from the test flight on the space shuttle. Phys. Rep. 2002, 366, 331–405. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Barao, F.; Barrin, L.; Bartoloni, A.; Başeğmez-du Pree, S.; Bates, J.; et al. The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II—Results from the first seven years. Phys. Rep. 2021, 894, 1–116. [Google Scholar] [CrossRef]
- Chang, J.; Ambrosi, G.; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Cai, M.; Caragiulo, M.; Chen, D.; et al. The DArk Matter Particle Explorer mission. Astropart. Phys. 2017, 95, 6–24. [Google Scholar] [CrossRef][Green Version]
- Marrocchesi, P.S. CALET on the ISS: A high energy astroparticle physics experiment. J. Phys. Conf. Ser. 2016, 718, 052023. [Google Scholar] [CrossRef][Green Version]
- Turundaevskiy, A.N.; Vasiliev, O.A.; Karmanov, D.E.; Kovalev, I.M.; Kudryashov, I.A.; Kurganov, A.A.; Panov, A.D.; Podorozhny, D.M. Main Results from the NUCLEON Experiment. Bull. Russ. Acad. Sci. Phys. 2021, 85, 353–356. [Google Scholar] [CrossRef]
- Seo, E.S.; Aggarwal, S.; Amare, Y.; Angelaszek, D.; Bowman, D.P.; Chen, Y.; Choi, G.H.; Copley, M.; Derome, L.; Eraud, L.; et al. Results from the Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 95. [Google Scholar] [CrossRef]
- Gabici, S.; Evoli, C.; Gaggero, D.; Lipari, P.; Mertsch, P.; Orlando, E.; Strong, A.; Vittino, A. The origin of Galactic cosmic rays: Challenges to the standard paradigm. Int. J. Mod. Phys. D 2019, 28, 1930022. [Google Scholar] [CrossRef]
- Herms, J.; Ibarra, A.; Vittino, A.; Wild, S. Antideuterons in cosmic rays: Sources and discovery potential. J. Cosmol. Astropart. Phys. 2017, 2017, 018. [Google Scholar] [CrossRef]
- Yamamoto, A.; Anraku, K.; Golden, R.; Haga, T.; Higashi, Y.; Imori, M.; Inaba, S.; Kimbell, B.; Kimura, N.; Makida, Y.; et al. Balloon-borne experiment with a superconducting solenoidal magnet spectrometer. Adv. Space Res. 1994, 14, 75–87. [Google Scholar] [CrossRef][Green Version]
- Lübelsmeyer, K.; Schultz von Dratzig, A.; Wlochal, M.; Ambrosi, G.; Azzarello, P.; Battiston, R.; Becker, R.; Becker, U.; Bertucci, B.; Bollweg, K.; et al. Upgrade of the Alpha Magnetic Spectrometer (AMS-02) for long term operation on the International Space Station (ISS). Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 654, 639–648. [Google Scholar] [CrossRef][Green Version]
- Musenich, R.; Becker, R.; Bollweg, K.; Burger, J.; Capell, M.; Datskov, V.I.; Gallilee, M.A.; Gargiulo, C.; Kounine, A.; Koutsenko, V.; et al. Results From the Testing of the AMS Space Superconducting Magnet. IEEE Trans. Appl. Supercond. 2012, 22, 4500204. [Google Scholar] [CrossRef]
- Giovacchini, F. Space application: The AMS RICH. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 970, 163657. [Google Scholar] [CrossRef]
- Stozhkov, Y.I. The in-flight performance of the PAMELA Neutron Detector. In Proceedings of the 30th International Cosmic Ray Conference—PoS(ICRC2007), Mérida, Yucatán, Mexico, 3–11 July 2007; Volume 2, pp. 325–328. [Google Scholar]
- Huang, Y.Y.; Ma, T.; Yue, C.; Zhang, Y.; Cai, M.S.; Chang, J.; Dong, T.K.; Zhang, Y.Q. Calibration and performance of the neutron detector onboard of the DAMPE mission. Res. Astron. Astrophys. 2020, 20, 153. [Google Scholar] [CrossRef]
- Doetinchem, P.v.; Fopp, S.; Karpinski, W.; Kirn, T.; Lübelsmeyer, K.; Orboeck, J.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Siedenburg, T.; et al. Performance of the AMS-02 transition radiation detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 558, 526–535. [Google Scholar] [CrossRef][Green Version]
- Kirn, T. The AMS-02 TRD on the international space station. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 706, 43–47. [Google Scholar] [CrossRef]
- Ambriola, M. Performance of the transition radiation detector of the PAMELA space mission. Nucl. Phys. B-Proc. Suppl. 2002, 113, 322–328. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; et al. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope. Phys. Rev. Lett. 2012, 108, 011103. [Google Scholar] [CrossRef]
- Ong, R.; Aramaki, T.; Bird, R.; Boezio, M.; Boggs, S.E.; Carr, R.; Craig, W.; Von Doetinchem, P.; Fabris, L.; Gahbauer, F.; et al. The GAPS experiment to search for dark matter using low-energy antimatter. In Proceedings of the 35th International Cosmic Ray Conference—PoS(ICRC2017), Bexco, Korea, 12–20 July 2017; Volume 301, p. 914. [Google Scholar] [CrossRef]
- Aramaki, T.; Adrian, P.O.H.; Karagiorgi, G.; Odaka, H. Dual MeV gamma-ray and dark matter observatory—GRAMS Project. Astropart. Phys. 2020, 114, 107–114. [Google Scholar] [CrossRef]
- Nozzoli, F.; Dimiccoli, F.; Zuccon, P. Perspectives of dark matter indirect search with ADHD in space. J. Physics Conf. Ser. 2020, 1548, 012035. [Google Scholar] [CrossRef]
- De Shong, J.A.; Hildebrand, R.H.; Meyer, P. Ratio of Electrons to Positrons in the Primary Cosmic Radiation. Phys. Rev. Lett. 1964, 12, 3–6. [Google Scholar] [CrossRef]
- Golden, R.L.; Horan, S.; Mauger, B.G.; Badhwar, G.D.; Lacy, J.L.; Stephens, S.A.; Daniel, R.R.; Zipse, J.E. Evidence for the Existence of Cosmic-Ray Antiprotons. Phys. Rev. Lett. 1979, 43, 1196–1199. [Google Scholar] [CrossRef]
- Earl, J.A. Cloud-Chamber Observations of Primary Cosmic-Ray Electrons. Phys. Rev. Lett. 1961, 6, 125–128. [Google Scholar] [CrossRef]
- Boezio, M.; Munini, R.; Picozza, P. Cosmic ray detection in space. Prog. Part. Nucl. Phys. 2020, 112, 103765. [Google Scholar] [CrossRef]
- Alcaraz, J. A silicon microstrip tracker in space Experience with the AMS silicon tracker on STS-91. Nuovo Cimento A 1999, 112A, 1325–1343. [Google Scholar] [CrossRef]
- Straulino, S.; Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D’Alessandro, R.; Gabbanini, A.; Grandi, M.; Papini, P.; Ricciarini, S.; et al. The PAMELA silicon tracker. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 530, 168–172. [Google Scholar] [CrossRef]
- Alpat, B.; Ambrosi, G.; Azzarello, P.; Battiston, R.; Bertucci, B.; Bourquin, M.; Burger, W.; Cadoux, F.; da Silva Costa, C.; Choutko, V.; et al. The internal alignment and position resolution of the AMS-02 silicon tracker determined with cosmic-ray muons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 613, 207–217. [Google Scholar] [CrossRef]
- Zhang, S.N.; Adriani, O.; Consortium, H.; Albergo, S.; Ambrosi, G.; An, Q.; Azzarello, P.; Bai, Y.; Bao, T.; Bernardini, P.; et al. Introduction to the High Energy cosmic-Radiation Detection (HERD) Facility onboard China’s Future Space Station. In Proceedings of the 35th International Cosmic Ray Conference—PoS(ICRC2017), Bexco, Korea, 12–20 July 2017; Volume 301, p. 1077. [Google Scholar] [CrossRef][Green Version]
- Schael, S.; Atanasyan, A.; Berdugo, J.; Bretz, T.; Czupalla, M.; Dachwald, B.; von Doetinchem, P.; Duranti, M.; Gast, H.; Karpinski, W.; et al. AMS-100: The next generation magnetic spectrometer in space–An international science platform for physics and astrophysics at Lagrange point 2. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 944, 162561. [Google Scholar] [CrossRef][Green Version]
- Torii, S. The CALorimetric Electron Telescope (CALET): A High-Energy Astroparticle Physics Observatory on the International Space Stati. In Proceedings of the 34th International Cosmic Ray Conference—PoS(ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; Volume 236, p. 581. [Google Scholar] [CrossRef]
- Ambrosi, G.; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Cai, M.S.; Chang, J.; Chen, D.Y.; Chen, H.F.; et al. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature 2017, 552, 63–66. [Google Scholar] [CrossRef][Green Version]
- National Institute for Nuclear Physics. Press Release. DAMPE: In Search of Dark Matter in Cosmic Rays. 2017. Available online: https://home.infn.it/en/press-releases/press-release-2017/2705-studiare-i-raggi-cosmici-per-capire-la-materia-oscura-dampe-pubblica-i-primi-risultati-2 (accessed on 1 April 2022).
- Kounine, A. The Alpha Magnetic Spectrometer on the International Space Station. Int. J. Mod. Phys. E 2012, 21, 1230005. [Google Scholar] [CrossRef]
- Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2014, 113, 121102. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; et al. Precision Measurement of the (e++e-) Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2014, 113, 221102. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Duranti, M. In-flight operations and status of the AMS-02 silicon tracker. In Proceedings of the 34th International Cosmic Ray Conference—PoS(ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; Volume 236, p. 690. [Google Scholar] [CrossRef][Green Version]
- Perrina, C. The future of the high energy cosmic ray detection: HERD. EPJ Web Conf. 2019, 209, 01040. [Google Scholar] [CrossRef]
- Blinnikov, S.I.; Dolgov, A.D.; Postnov, K.A. Antimatter and antistars in the Universe and in the Galaxy. Phys. Rev. D 2015, 92, 023516. [Google Scholar] [CrossRef][Green Version]
- Poulin, V.; Salati, P.; Cholis, I.; Kamionkowski, M.; Silk, J. Where do the AMS-02 antihelium events come from? Phys. Rev. D 2019, 99, 023016. [Google Scholar] [CrossRef][Green Version]
- Zyla, P.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics. PTEP 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Bambi, C.; Dolgov, A. Antimatter in the Milky Way. Nucl. Phys. B 2007, 784, 132–150. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Bianco, A.; Boezio, M.; Bogomolov, E.A.; Bongi, M.; Bonvicini, V.; Bottai, S.; et al. Cosmic-Ray Positron Energy Spectrum Measured by PAMELA. Phys. Rev. Lett. 2013, 111, 081102. [Google Scholar] [CrossRef][Green Version]
- Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; et al. Towards Understanding the Origin of Cosmic-Ray Positrons. Phys. Rev. Lett. 2019, 122, 041102. [Google Scholar] [CrossRef][Green Version]
- Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2016, 117, 091103. [Google Scholar] [CrossRef]
- Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Itazaki, A.; Kim, K.; Kumazawa, T.; Lee, M.; Makida, Y.; Matsuda, S.; et al. Measurement of the cosmic-ray low-energy antiproton spectrum with the first BESS-Polar Antarctic flight. Phys. Lett. B 2008, 670, 103–108. [Google Scholar] [CrossRef][Green Version]
- Alcaraz, J.; Alvisi, D.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; et al. Search for antihelium in cosmic rays. Phys. Lett. B 1999, 461, 387–396. [Google Scholar] [CrossRef][Green Version]
- Chardonnet, P.; Orloff, J.; Salati, P. The production of anti-matter in our galaxy. Phys. Lett. B 1997, 409, 313–320. [Google Scholar] [CrossRef][Green Version]
- Ting, S.C.C. Latest Results from the AMS Experiment on the International Space Station. In Proceedings of the 69th International Astronautical Congress 2018, Bremen, Germany, 1–5 October 2018. [Google Scholar]
- Blum, K.; Ng, K.C.Y.; Sato, R.; Takimoto, M. Cosmic rays, antihelium, and an old navy spotlight. Phys. Rev. D 2017, 96, 103021. [Google Scholar] [CrossRef][Green Version]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bottai, S.; et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 2009, 458, 607–609. [Google Scholar] [CrossRef][Green Version]
- Aguilar, M.; Alberti, G.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Anderhub, H.; Arruda, L.; Azzarello, P.; Bachlechner, A.; et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV. Phys. Rev. Lett. 2013, 110, 141102. [Google Scholar] [CrossRef]
- Accardo, L.; Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; et al. High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2014, 113, 121101. [Google Scholar] [CrossRef][Green Version]
- Cowsik, R.; Burch, B.; Madziwa-Nussinov, T. The origin of the spectral intensities of cosmic-ray positrons. Astrophys. J. 2014, 786, 124. [Google Scholar] [CrossRef][Green Version]
- Lipari, P. Interpretation of the cosmic ray positron and antiproton fluxes. Physical Rev. D 2017, 95, 063009. [Google Scholar] [CrossRef][Green Version]
- Blum, K.; Katz, B.; Waxman, E. AMS-02 Results Support the Secondary Origin of Cosmic Ray Positrons. Phys. Rev. Lett. 2013, 111, 211101. [Google Scholar] [CrossRef][Green Version]
- Turner, M.S.; Wilczek, F. Positron line radiation as a signature of particle dark matter in the halo. Phys. Rev. D 1990, 42, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J. Particles and cosmology: Learning from cosmic rays. AIP Conf. Proc. 2000, 516, 21–46. [Google Scholar] [CrossRef][Green Version]
- Cheng, H.C.; Feng, J.L.; Matchev, K.T. Kaluza-Klein Dark Matter. Physical Rev. Lett. 2002, 89, 211301. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kane, G.; Lu, R.; Watson, S. PAMELA satellite data as a signal of non-thermal wino LSP dark matter. Phys. Lett. B 2009, 681, 151–160. [Google Scholar] [CrossRef][Green Version]
- Kopp, J. Constraints on dark matter annihilation from AMS-02 results. Physical Rev. D 2013, 88, 076013. [Google Scholar] [CrossRef][Green Version]
- Chen, C.H.; Chiang, C.W.; Nomura, T. Dark matter for excess of AMS-02 positrons and antiprotons. Phys. Lett. B 2015, 747, 495–499. [Google Scholar] [CrossRef][Green Version]
- Cheng, H.C.; Huang, W.C.; Huang, X.; Low, I.; Tsai, Y.L.S.; Yuan, Q. AMS-02 positron excess and indirect detection of three-body decaying dark matter. J. Cosmol. Astropart. Phys. 2017, 2017, 041. [Google Scholar] [CrossRef][Green Version]
- Bai, Y.; Berger, J.; Lu, S. Supersymmetric resonant dark matter: A thermal model for the AMS-02 positron excess. Phys. Rev. D 2018, 97, 115012. [Google Scholar] [CrossRef][Green Version]
- Profumo, S.; Queiroz, F.; Siqueira, C. Has AMS-02 observed two-component dark matter? J. Phys. G: Nucl. Part. Phys. 2020, 48, 015006. [Google Scholar] [CrossRef]
- Serpico, P.D. Astrophysical models for the origin of the positron “excess”. Astropart. Phys. 2012, 39-40, 2–11. [Google Scholar] [CrossRef][Green Version]
- Linden, T.; Profumo, S. Probing the pulsar origin of the anomalous positron fraction with AMS-02 and atmospheric Cherenkov telescopes. Astrophys. J. 2013, 772, 18. [Google Scholar] [CrossRef][Green Version]
- Mertsch, P.; Sarkar, S. AMS-02 data confront acceleration of cosmic ray secondaries in nearby sources. Phys. Rev. D 2014, 90, 061301. [Google Scholar] [CrossRef][Green Version]
- Tomassetti, N.; Donato, F. The connection between the positron fraction anomaly and the spectral features in galactic cosmic-ray hadrons. Astrophys. J. 2015, 803, L15. [Google Scholar] [CrossRef][Green Version]
- Hooper, D.; Cholis, I.; Linden, T.; Fang, K. HAWC observations strongly favor pulsar interpretations of the cosmic-ray positron excess. Phys. Rev. D 2017, 96, 103013. [Google Scholar] [CrossRef][Green Version]
- Liu, W.; Bi, X.J.; Lin, S.J.; Wang, B.B.; Yin, P.F. Excesses of cosmic ray spectra from a single nearby source. Phys. Rev. D 2017, 96, 023006. [Google Scholar] [CrossRef][Green Version]
- Bykov, A.M.; Amato, E.; Petrov, A.E.; Krassilchtchikov, A.M.; Levenfish, K.P. Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons. Space Sci. Rev. 2017, 207, 235–290. [Google Scholar] [CrossRef][Green Version]
- Kachelrieß, M.; Neronov, A.; Semikoz, D.V. Cosmic ray signatures of a 2–3 Myr old local supernova. Phys. Rev. D 2018, 97, 063011. [Google Scholar] [CrossRef][Green Version]
- Profumo, S.; Reynoso-Cordova, J.; Kaaz, N.; Silverman, M. Lessons from HAWC pulsar wind nebulae observations: The diffusion constant is not a constant; pulsars remain the likeliest sources of the anomalous positron fraction; cosmic rays are trapped for long periods of time in pockets of inefficient diffusion. Phys. Rev. D 2018, 97, 123008. [Google Scholar] [CrossRef][Green Version]
- Manconi, S.; Mauro, M.D.; Donato, F. Dipole anisotropy in cosmic electrons and positrons: Inspection on local sources. J. Cosmol. Astropart. Phys. 2017, 2017, 006. [Google Scholar] [CrossRef][Green Version]
- Fang, K.; Bi, X.J.; Yin, P.F. Discriminating local sources of high-energy cosmic electrons and positrons by current and future anisotropy measurements. Mon. Not. R. Astron. Soc. 2018, 478, 5660–5670. [Google Scholar] [CrossRef]
- Giesen, G.; Boudaud, M.; Génolini, Y.; Poulin, V.; Cirelli, M.; Salati, P.; Serpico, P.D. AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter. J. Cosmol. Astropart. Phys. 2015, 2015, 023. [Google Scholar] [CrossRef]
- Evoli, C.; Gaggero, D.; Grasso, D. Secondary antiprotons as a Galactic Dark Matter probe. J. Cosmol. Astropart. Phys. 2015, 2015, 039. [Google Scholar] [CrossRef][Green Version]
- Cui, M.Y.; Yuan, Q.; Tsai, Y.L.S.; Fan, Y.Z. Possible Dark Matter Annihilation Signal in the AMS-02 Antiproton Data. Phys. Rev. Lett. 2017, 118, 191101. [Google Scholar] [CrossRef][Green Version]
- Cuoco, A.; Krämer, M.; Korsmeier, M. Novel Dark Matter Constraints from Antiprotons in Light of AMS-02. Phys. Rev. Lett. 2017, 118, 191102. [Google Scholar] [CrossRef] [PubMed]
- Reinert, A.; Winkler, M.W. A precision search for WIMPs with charged cosmic rays. J. Cosmol. Astropart. Phys. 2018, 2018, 055. [Google Scholar] [CrossRef][Green Version]
- Cholis, I.; Linden, T.; Hooper, D. A robust excess in the cosmic-ray antiproton spectrum: Implications for annihilating dark matter. Phys. Rev. D 2019, 99, 103026. [Google Scholar] [CrossRef][Green Version]
- Donato, F.; Korsmeier, M.; Di Mauro, M. Prescriptions on antiproton cross section data for precise theoretical antiproton flux predictions. Phys. Rev. D 2017, 96, 043007. [Google Scholar] [CrossRef][Green Version]
- Boschini, M.J.; Torre, S.D.; Gervasi, M.; Grandi, D.; Jóhannesson, G.; Kachelriess, M.; Vacca, G.L.; Masi, N.; Moskalenko, I.V.; Orlando, E.; et al. Solution of Heliospheric Propagation: Unveiling the Local Interstellar Spectra of Cosmic-ray Species. Astrophys. J. 2017, 840, 115. [Google Scholar] [CrossRef]
- Bresci, V.; Amato, E.; Blasi, P.; Morlino, G. Effects of re-acceleration and source grammage on secondary cosmic rays spectra. Mon. Not. R. Astron. Soc. 2019, 488, 2068–2078. [Google Scholar] [CrossRef]
- Donato, F.; Fornengo, N.; Salati, P. Antideuterons as a signature of supersymmetric dark matter. Phys. Rev. D 2000, 62, 043003. [Google Scholar] [CrossRef][Green Version]
- Cirelli, M.; Fornengo, N.; Taoso, M.; Vittino, A. Anti-helium from dark matter annihilations. J. High Energy Phys. 2014, 2014, 9. [Google Scholar] [CrossRef][Green Version]
- Carlson, E.; Coogan, A.; Linden, T.; Profumo, S.; Ibarra, A.; Wild, S. Antihelium from dark matter. Phys. Rev. D 2014, 89, 076005. [Google Scholar] [CrossRef][Green Version]
- Cholis, I.; Linden, T.; Hooper, D. Antideuterons and antihelium nuclei from annihilating dark matter. Phys. Rev. D 2020, 102. [Google Scholar] [CrossRef]
- McElwain, M.W.; Niedner, M.B.; Bowers, C.W.; Kimble, R.A.; Smith, E.C.; Clampin, M. The James Webb Space telescope: Observatory status and preparations for launch (Conference Presentation). In Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave; Lystrup, M., MacEwen, H.A., Fazio, G.G., Batalha, N., Siegler, N., Tong, E.C., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2018; Volume 10698. [Google Scholar] [CrossRef]
- Berdugo, J.; Choutko, V.; Delgado, C.; Yan, Q. Determination of the rigidity scale of the Alpha Magnetic Spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 869, 10–14. [Google Scholar] [CrossRef]
- Zang, J.; Yue, C.; Li, X. Measurement of absolute energy scale of ECAL of DAMPE with geomagnetic rigidity cutoff. In Proceedings of the 35th International Cosmic Ray Conference—PoS(ICRC2017), Bexco, Korea, 12–20 July 2017; Volume 301, p. 197. [Google Scholar] [CrossRef]
- Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M.G.; Bigongiari, G.; Binns, W.R.; Bonechi, S.; Bongi, M.; Brogi, P.; et al. Energy Spectrum of Cosmic-Ray Electron and Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2017, 119, 181101. [Google Scholar] [CrossRef][Green Version]
- Battiston, R.; Bertucci, B.; Adriani, O.; Ambrosi, G.; Baudouy, B.; Blasi, P.; Boezio, M.; Campana, D.; Derome, L.; De Mitri, I.; et al. High precision particle astrophysics as a new window on the universe with an Antimatter Large Acceptance Detector In Orbit (ALADInO). Exp. Astron. 2021, 51, 1299–1330. [Google Scholar] [CrossRef]
- Duranti, M. The AMS-02 Silicon Tracker (The Detector after 500 Days in Space). In Proceedings of the 21st International Workshop on Vertex Detectors—PoS(Vertex 2012), Jeju, Korea, 16–21 September 2012; Volume 167, p. 52. [Google Scholar] [CrossRef][Green Version]
- NASA. Roman Space Telescope Observatory Reference Information. Available online: https://roman.gsfc.nasa.gov/science/Roman_Reference_Information.html, (accessed on 8 January 2022).
- Christine Pulliam. 2021. Available online: https://www.nasa.gov/feature/goddard/2021/ground-system-for-nasa-s-roman-space-telescope-moves-into-development, (accessed on 8 January 2022).
- Johns, A.; Seaton, B.; Gal-Edd, J.; Jones, R.; Fatig, C.; Wasiak, F. James Webb Space Telescope: L2 communications for science data processing. In Observatory Operations: Strategies, Processes, and Systems II; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Brissenden, R.J., Silva, D.R., Eds.; SPIE: Bellingham, WA, USA, 2008; Volume 7016, p. 70161D. [Google Scholar] [CrossRef][Green Version]
- Dubath, P.; Apostolakos, N.; Bonchi, A.; Belikov, A.; Brescia, M.; Cavuoti, S.; Capak, P.; Coupon, J.; Dabin, C.; Degaudenzi, H.; et al. The Euclid Data Processing Challenges. Proc. Int. Astron. Union 2017, 12. [Google Scholar] [CrossRef][Green Version]
- Mori, N. GGS: A Generic Geant4 Simulation package for small- and medium-sized particle detection experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1002, 165298. [Google Scholar] [CrossRef]
- Sullivan, J. Geometric factor and directional response of single and multi-element particle telescopes. Nucl. Instrum. Methods 1971, 95, 5–11. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; et al. Towards Understanding the Origin of Cosmic-Ray Electrons. Phys. Rev. Lett. 2019, 122, 101101. [Google Scholar] [CrossRef][Green Version]
- Fornieri, O.; Gaggero, D.; Grasso, D. Features in cosmic-ray lepton data unveil the properties of nearby cosmic accelerators. J. Cosmol. Astropart. Phys. 2020, 2020, 009. [Google Scholar] [CrossRef][Green Version]
- Feng, J.; Zhang, H.H. Pulsar interpretation of lepton spectra measured by AMS-02. Eur. Phys. J. C 2016, 76, 229. [Google Scholar] [CrossRef][Green Version]
- Büsching, I.; de Jager, O.C.; Potgieter, M.S.; Venter, C. A Cosmic-Ray Positron Anisotropy due to Two Middle-Aged, Nearby Pulsars? Astrophys. J. 2008, 678, L39–L42. [Google Scholar] [CrossRef]
- Jin, H.B.; Wu, Y.L.; Zhou, Y.F. Upper limits on dark matter annihilation cross sections from the first AMS-02 antiproton data. Phys. Rev. D 2015, 92, 055027. [Google Scholar] [CrossRef][Green Version]
- von Doetinchem, P.; Perez, K.; Aramaki, T.; Baker, S.; Barwick, S.; Bird, R.; Boezio, M.; Boggs, S.; Cui, M.; Datta, A.; et al. Cosmic-ray antinuclei as messengers of new physics: Status and outlook for the new decade. J. Cosmol. Astropart. Phys. 2020, 2020, 035. [Google Scholar] [CrossRef]
- Choutko, V.; Giovacchini, F. Cosmic Rays Antideuteron Sensitivity for AMS-02 Experiment. In Proceedings of the 30th International Cosmic Ray Conference—PoS(ICRC2007), Mérida, Yucatán, Mexico, 3–11 July 2007; Volume 4, pp. 765–768. [Google Scholar]
- Aramaki, T.; Hailey, C.J.; Boggs, S.E.; von Doetinchem, P.; Fuke, H.; Mognet, S.I.; Ong, R.A.; Perez, K.; Zweerink, J. Antideuteron sensitivity for the GAPS experiment. Astropart. Phys. 2016, 74, 6–13. [Google Scholar] [CrossRef][Green Version]
- Coogan, A.; Profumo, S. Origin of the tentative AMS antihelium events. Physical Rev. D 2017, 96, 083020. [Google Scholar] [CrossRef][Green Version]
- Cowsik, R.; Madziwa-Nussinov, T. Spectral intensities of antiprotons and the nested leaky-box model for cosmic rays in the Galaxy. Astrophys. J. 2016, 827, 119. [Google Scholar] [CrossRef]
- Sakai, K.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Kim, K.; Lee, M.; Makida, Y.; Mitchell, J.; et al. New result of Antideuteron search in BESS-Polar II. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 123. [Google Scholar] [CrossRef]
- Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K.C.; Kumazawa, T.; Kusumoto, A.; et al. Search for Antihelium with the BESS-Polar Spectrometer. Phys. Rev. Lett. 2012, 108, 131301. [Google Scholar] [CrossRef][Green Version]
- Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D’Alessandro, R.; Gabbanini, A.; Grandi, M.; Papini, P.; Ricciarini, S.B.; Spillantini, P.; et al. The magnetic spectrometer of the PAMELA satellite experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 511, 72–75. [Google Scholar] [CrossRef]
- Viertel, G.; Capell, M. The ALPHA Magnetic Spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1998, 419, 295–299. [Google Scholar] [CrossRef]
- Blau, B.; Harrison, S.; Hofer, H.; Horvath, I.; Milward, S.; Ross, J.; Ting, S.; Ulbricht, J.; Viertel, G. The superconducting magnet system of AMS-02—A particle physics detector to be operated on the International Space Station. IEEE Trans. Appl. Supercond. 2002, 12, 349–352. [Google Scholar] [CrossRef]
- Blau, B.; Harrison, S.; Hofer, H.; Milward, S.; Kaiser, G.; Ross, J.S.H.; Ting, S.; Ulbricht, J. The superconducting magnet system of the alpha magnetic spectrometer AMS-02. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 518, 139–142. [Google Scholar] [CrossRef]
- Musenich, R.; Adriani, O.; Baudouy, B.; Calvelli, V.; Farinon, S.; Papini, P.; Bertucci, B. A Proposal for a Superconducting Space Magnet for an Antimatter Spectrometer. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Battiston, R.; Burger, W.J.; Calvelli, V.; Datskov, V.I.; Farinon, S.; Musenich, R. Superconducting Magnets for Astroparticle Shielding in Interplanetary Manned Missions. IEEE Trans. Appl. Supercond. 2013, 23, 4101604. [Google Scholar] [CrossRef]
- Musenich, R.; Calvelli, V.; Farinon, S.; Battiston, R.; Burger, W.J.; Spillantini, P. A Magnesium Diboride Superconducting Toroid for Astroparticle Shielding. IEEE Trans. Appl. Supercond. 2014, 24, 1–4. [Google Scholar] [CrossRef]
- Rossi, L.; Sorbi, M.; Spillantini, P. A superconducting magnetic lens for solar rays protection in manned interplanetary missions. IEEE Trans. Appl. Supercond. 2004, 14, 1696–1699. [Google Scholar] [CrossRef]
- Green, M.; Smoot, G.; Golden, R.; Israel, M.; Kephart, R.; Niemann, R.; Mewalt, R.; Ormes, J.; Spillantini, P.; Wiedenbeck, M. ASTROMAG: A superconducting particle astrophysics magnet facility for the space station. IEEE Trans. Magn. 1987, 23, 1240–1243. [Google Scholar] [CrossRef]
- Dam, M.; Battiston, R.; Burger, W.J.; Carpentiero, R.; Chesta, E.; Iuppa, R.; de Rijk, G.; Rossi, L. Conceptual design of a high temperature superconducting magnet for a particle physics experiment in space. Supercond. Sci. Technol. 2020, 33, 044012. [Google Scholar] [CrossRef]
- OPERA. 2021. Available online: https://www.3ds.com/products-services/simulia/products/opera/ (accessed on 11 January 2022).
- Hahn, S.; Park, D.K.; Bascunan, J.; Iwasa, Y. HTS Pancake Coils Without Turn-to-Turn Insulation. IEEE Trans. Appl. Supercond. 2011, 21, 1592–1595. [Google Scholar] [CrossRef]
- SuperPower Inc. 2021. Available online: https://www.superpower-inc.com/specification.aspx (accessed on 1 April 2022).
- Brittles, G.D.; Mousavi, T.; Grovenor, C.R.M.; Aksoy, C.; Speller, S.C. Persistent current joints between technological superconductors. Supercond. Sci. Technol. 2015, 28, 093001. [Google Scholar] [CrossRef]
- Bruce, R.; Baudouy, B. Cryogenic Design of a Large Superconducting Magnet for Astro-particle Shielding on Deep Space Travel Missions. Phys. Procedia 2015, 67, 264–269. [Google Scholar] [CrossRef][Green Version]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.; Banday, A.J.; Barreiro, R.B.; et al. Planck early results. II. The thermal performance of Planck. Astron. Astrophys. 2011, 536. [Google Scholar]
- Arenberg, J.; Flynn, J.; Cohen, A.; Lynch, R.; Cooper, J. Status of the JWST sunshield and spacecraft. In Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave; MacEwen, H.A., Fazio, G.G., Lystrup, M., Batalha, N., Siegler, N., Tong, E.C., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2016; Volume 9904, pp. 20–33. [Google Scholar] [CrossRef]
- Corbacho, V.V.; Kuiper, H.; Gill, E. Review on thermal and mechanical challenges in the development of deployable space optics. J. Astron. Telesc. Instruments, Syst. 2020, 6, 1–30. [Google Scholar] [CrossRef]
- Barba, M.; Bruce, R.; Bonelli, A.; Baudouy, B. Experimental study of Large-scale cryogenic Pulsating Heat Pipe. IOP Conf. Ser. Mater. Sci. Eng. 2017, 278, 012156. [Google Scholar] [CrossRef]
- Bruce, R.; Barba, M.; Bonelli, A.; Baudouy, B. Thermal performance of a meter-scale horizontal nitrogen Pulsating Heat Pipe. Cryogenics 2018, 93, 66–74. [Google Scholar] [CrossRef]
- Barba, M.; Bruce, R.; Bouchet, F.; Bonelli, A.; Baudouy, B. Effects of filling ratio of a long cryogenic Pulsating Heat Pipe. Appl. Therm. Eng. 2021, 194, 117072. [Google Scholar] [CrossRef]
- Barba, M.; Bruce, R.; Bouchet, F.; Bonelli, A.; Baudouy, B. Effect of the thermo-physical properties of the working fluid on the performance of a 1-m long cryogenic horizontal pulsating heat pipe. Int. J. Heat Mass Transf. 2022, 187, 122458. [Google Scholar] [CrossRef]
- Prest, M.; Barbiellini, G.; Bordignon, G.; Fedel, G.; Liello, F.; Longo, F.; Pontoni, C.; Vallazza, E. The AGILE silicon tracker: An innovative γ-ray instrument for space. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 501, 280–287. [Google Scholar] [CrossRef]
- Atwood, W.; Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.; et al. Design and initial tests of the Tracker-converter of the Gamma-ray Large Area Space Telescope. Astropart. Phys. 2007, 28, 422–434. [Google Scholar] [CrossRef][Green Version]
- Tykhonov, A.; Ambrosi, G.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Bolognini, A.; Cadoux, F.; D’Amone, A.; De Benedittis, A.; et al. In-flight performance of the DAMPE silicon tracker. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 924, 309–315. [Google Scholar] [CrossRef][Green Version]
- Turchetta, R. Spatial resolution of silicon microstrip detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1993, 335, 44–58. [Google Scholar] [CrossRef]
- Straulino, S.; Adriani, O.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Fedele, D.; Grandi, M.; Papini, P.; Ricciarini, S.B.; et al. Spatial resolution of double-sided silicon microstrip detectors for the PAMELA apparatus. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 556, 100–114. [Google Scholar] [CrossRef][Green Version]
- Ambrosi, G.; Choutko, V.; Delgado, C.; Oliva, A.; Yan, Q.; Li, Y. The spatial resolution of the silicon tracker of the Alpha Magnetic Spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 869, 29–37. [Google Scholar] [CrossRef]
- Ambrosi, G.; Azzrello, P.; Battiston, R.; Bazo, J.; Bertucci, B.; Choumilov, E.; Choutko, V.; Delgado-Mendez, C.; Duranti, M.; D’Urso, D.; et al. Alignment of the AMS-02 silicon Tracker. In Proceedings of the International Cosmic Ray Conference—PoS(ICRC2013), Rio de Janeiro, Brazil, 2–9 July 2013; Volume 33, p. 570. [Google Scholar]
- IDE1140. 2021. Available online: http://ideas.no/products/ide1140/ (accessed on 13 January 2022).
- Jia, Y.; Yan, Q.; Choutko, V.; Liu, H.; Oliva, A. Nuclei charge measurement by the Alpha Magnetic Spectrometer silicon tracker. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 972, 164169. [Google Scholar] [CrossRef]
- Cartiglia, N.; Baselga, M.; Dellacasa, G.; Ely, S.; Fadeyev, V.; Galloway, Z.; Garbolino, S.; Marchetto, F.; Martoiu, S.; Mazza, G.; et al. Performance of ultra-fast silicon detectors. J. Instrum. 2014, 9, C02001. [Google Scholar] [CrossRef]
- Duranti, M.; Vagelli, V.; Ambrosi, G.; Barbanera, M.; Bertucci, B.; Catanzani, E.; Donnini, F.; Faldi, F.; Formato, V.; Graziani, M.; et al. Advantages and Requirements in Time Resolving Tracking for Astroparticle Experiments in Space. Instruments 2021, 5, 20. [Google Scholar] [CrossRef]
- Weeroc. 2021. Available online: https://www.weeroc.com/products/sipm-read-out/petiroc-2a, (accessed on 25 January 2022).
- Turchetta, R.; Berst, J.; Casadei, B.; Claus, G.; Colledani, C.; Dulinski, W.; Hu, Y.; Husson, D.; Le Normand, J.; Riester, J.; et al. A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 458, 677–689. [Google Scholar] [CrossRef]
- Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; et al. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 785, 61–69. [Google Scholar] [CrossRef]
- Mager, M. ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 824, 434–438. [Google Scholar] [CrossRef][Green Version]
- Aglieri, G.; Cavicchioli, C.; Chalmet, P.L.; Chanlek, N.; Collu, A.; Giubilato, P.; Hillemanns, H.; Junique, A.; Keil, M.; Kim, D.; et al. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system. J. Instrum. 2013, 8, C12041. [Google Scholar] [CrossRef]
- Mager, M. Upgrade of the ALICE ITS in LS3. In Proceedings of the 28th International Workshop on Vertex Detectors—PoS(Vertex2019), Lopud, Croatia, 13–18 October 2019; Volume 373, p. 40. [Google Scholar] [CrossRef]
- Neubüser, C.; Corradino, T.; Dalla Betta, G.F.; De Cilladi, L.; Pancheri, L. Sensor Design Optimization of Innovative Low-Power, Large Area FD-MAPS for HEP and Applied Science. Front. Phys. 2021, 9, 639. [Google Scholar] [CrossRef]
- De Santis, C.; Ricciarini, S. The High Energy Particle Detector (HEPD-02) for the second China Seismo-Electromagnetic Satellite (CSES-02). In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 58. [Google Scholar] [CrossRef]
- Ricciarini, S.B.; Beolé, S.; de Cilladi, L.; Gebbia, G.; Iuppa, R.; Ricci, E.; Zuccon, P. Enabling low-power MAPS-based space trackers: A sparsified readout based on smart clock gating for the High Energy Particle Detector HEPD-02. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 071. [Google Scholar] [CrossRef]
- Turecek, D.; Pinsky, L.; Jakubek, J.; Vykydal, Z.; Stoffle, N.; Pospisil, S. Small Dosimeter based on Timepix device for International Space Station. J. Instrum. 2011, 6, C12037. [Google Scholar] [CrossRef]
- Adriani, O.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.; et al. CaloCube: An isotropic spaceborne calorimeter for high-energy cosmic rays. Optimization of the detector performance for protons and nuclei. Astropart. Phys. 2017, 96, 11–17. [Google Scholar] [CrossRef]
- Adriani, O.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bottai, S.; et al. The CALOCUBE project for a space based cosmic ray experiment: Design, construction, and first performance of a high granularity calorimeter prototype. J. Instrum. 2019, 14, P11004. [Google Scholar] [CrossRef][Green Version]
- Adriani, O.; Agnesi, A.; Albergo, S.; Antonelli, M.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bongi, M.; et al. The CaloCube calorimeter for high-energy cosmic-ray measurements in space: Performance of a large-scale prototype. J. Instrum. 2021, 16, P10024. [Google Scholar] [CrossRef]
- Pacini, L.; Adriani, O.; Bai, Y.l.; Bao, T.w.; Berti, E.; Bottai, S.; Cao, W.w.; Casaus, J.; Cui, X.z.; D’Alessandro, R.; et al. Design and expected performances of the large acceptance calorimeter for the HERD space mission. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 66. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, R.; Yang, F.; Zhu, R.Y. LSO/LYSO Crystals for Calorimeters in Future HEP Experiments. IEEE Trans. Nucl. Sci. 2014, 61, 483–488. [Google Scholar] [CrossRef][Green Version]
- Vitale, V. The Limadou-HEPD Segmented Calorimeter. EPJ Web Conf. 2019, 209, 1034. [Google Scholar] [CrossRef][Green Version]
- Barbato, F.; Abba, A.; Anastasio, A.; Barbarino, G.; Boiano, A.; de Asmundis, R.; De Mitri, I.; Ferrentino, L.; Garufi, F.; Guarino, F.; et al. The Crystal Eye X and gamma ray detector for space missions. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 581. [Google Scholar] [CrossRef]
- Bonvicini, V.; Orzan, G.; Zampa, G.; Zampa, N. A Double-Gain, Large Dynamic Range Front-end ASIC With A/D Conversion for Silicon Detectors Read-Out. IEEE Trans. Nucl. Sci. 2010, 57, 2963–2970. [Google Scholar] [CrossRef]
- Böhlen, T.; Cerutti, F.; Chin, M.; Fassò, A.; Ferrari, A.; Ortega, P.; Mairani, A.; Sala, P.; Smirnov, G.; Vlachoudis, V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl. Data Sheets 2014, 120, 211–214. [Google Scholar] [CrossRef][Green Version]
- Bigongiari, G.; Adriani, O.; Albergo, S.; Ambrosi, G.; Auditore, L.; Basti, A.; Berti, E.; Bonechi, L.; Bonechi, S.; Bongi, M.; et al. A New Approach to Calorimetry in Space-Based Experiments for High-Energy Cosmic Rays. Universe 2019, 5, 72. [Google Scholar] [CrossRef][Green Version]
- Osteria, G.; Campana, D.; Barbarino, G.; Boscherini, M.; Menn, W.; Mitchell, J.; Rossi, G.; Russo, S.; Simon, M.; Streitmatter, R. The time-of-flight system of the PAMELA experiment on satellite. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 535, 152–157. [Google Scholar] [CrossRef]
- Bindi, V.; Chen, G.; Chen, H.; Choumilov, E.; Choutko, V.; Contin, A.; Lebedev, A.; Lu, Y.; Masi, N.; Oliva, A.; et al. Calibration and performance of the AMS-02 time of flight detector in space. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 743, 22–29. [Google Scholar] [CrossRef]
- Renker, D.; Lorenz, E. Advances in solid state photon detectors. J. Instrum. 2009, 4, P04004. [Google Scholar] [CrossRef]
- Piemonte, C.; Gola, A. Overview on the main parameters and technology of modern Silicon Photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 926, 2–15. [Google Scholar] [CrossRef]
- Ambrosi, G.; Vagelli, V. Applications of silicon photomultipliers in ground-based and spaceborne high-energy astrophysics. Eur. Phys. J. Plus 2022, 137, 170. [Google Scholar] [CrossRef]
- Link, J.; Brandt, T.; De Nolfo, G.A.; Du Monthier, J.; Krizmanic, J.; Mitchell, J.; Mitchell, S.; Sakai, K.; Sasaki, M.; Suarez, G.; et al. SIPM use in Future Space Instruments. In Proceedings of the 35th International Cosmic Ray Conference—PoS(ICRC2017), Bexco, Korea, 12–20 July 2017; Volume 301, p. 235. [Google Scholar] [CrossRef][Green Version]
- Quinn, S. The GAPS Instrument: A Large Area Time of Flight and High Resolution Exotic Atom Spectrometer for Cosmic Antinuclei. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 79. [Google Scholar] [CrossRef]
- Wang, J.j.; Wu, X.; Xu, M.; Perrina, C.; Azzarello, P.; Cadoux, F.; Favre, Y.; Marra, D.L.; Wu, B.b. Feasibility study of cosmic-ray components measurement by using a scintillating fiber tracker in space. Radiat. Detect. Technol. Methods 2021, 5, 389–403. [Google Scholar] [CrossRef]
- Altomare, C.; De La Torre Luque, P.; Di Venere, L.; Fusco, P.; Gargano, F.; Giordano, F.; Hu, P.; Loparco, F.; Loporchio, S.; Mazziotta, M.; et al. Particle identification capability of Plastic scintillator tiles equipped with SiPMs for the High Energy cosmic-Radiation Detection (HERD) facility. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 983, 164476. [Google Scholar] [CrossRef]
- Betancourt, C.; Blondel, A.; Brundler, R.; Dätwyler, A.; Favre, Y.; Gascon, D.; Gomez, S.; Korzenev, A.; Mermod, P.; Noah, E.; et al. Application of large area SiPMs for the readout of a plastic scintillator based timing detector. J. Instrum. 2017, 12, P11023. [Google Scholar] [CrossRef][Green Version]
- Betancourt, C.; Dätwyler, A.; Serra, N.; Storaci, B.; Blondel, A.; Korzenev, A.; Mermod, P.; Noah, E.; Gascon, D.; Gomez, S. A timing detector for the SHiP experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 924, 369–372. [Google Scholar] [CrossRef]
- Cattaneo, P.W.; De Gerone, M.; Gatti, F.; Nishimura, M.; Ootani, W.; Rossella, M.; Uchiyama, Y. Development of High Precision Timing Counter Based on Plastic Scintillator with SiPM Readout. IEEE Trans. Nucl. Sci. 2014, 61, 2657–2666. [Google Scholar] [CrossRef][Green Version]
- Böhm, M.; Götzen, K.; Gruber, L.; Kratochwil, N.; Lehmann, A.; Orth, H.; Steinschaden, D.; Suzuki, K.; Zimmermann, S. The PANDA Barrel-TOF Detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 912, 323–325. [Google Scholar] [CrossRef]
- Chung, C.; Backes, T.; Dittmar, C.; Karpinski, W.; Kirn, T.; Louis, D.; Schwering, G.; Wlochal, M.; Schael, S. The Development of SiPM-Based Fast Time-of-Flight Detector for the AMS-100 Experiment in Space. Instruments 2022, 6, 14. [Google Scholar] [CrossRef]
- Paternoster, G. Silicon Photomultipliers developed at FBK for Physics Applications. In Proceedings of the Contribution to 13th Trento Workshop on Advanced Silicon Radiation Detectors, Munich, Germany, 19–21 February 2018. [Google Scholar]
- Garutti, E.; Musienko, Y. Radiation damage of SiPMs. Nucl. Instrum. Methods Phys. Res. A 2019, 926, 69–84. [Google Scholar] [CrossRef][Green Version]
- Durante, M.; Cucinotta, F.A. Physical basis of radiation protection in space travel. Rev. Mod. Phys. 2011, 83, 1245–1281. [Google Scholar] [CrossRef]
- Link, J.; Akaike, Y.; R. Binns, W.; Bose, R.G.; Brandt, T.J.; Buckley, J.H.; Cannady, S.O.; De Nolfo, G.A.; Dowkontt, P.F.; Du Monthier, J.J.; et al. Silicon Photomultiplier use in Particle Astrophysics and Heliophysics Missions. In Proceedings of the 36th International Cosmic Ray Conference —PoS(ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 358, p. 096. [Google Scholar] [CrossRef]
- Altamura, A.R.; Acerbi, F.; Ruzza, B.D.; Verroi, E.; Merzi, S.; Gola, A. Radiation damage on SiPMs for Space Applications. arXiv 2021, arXiv:physics.ins-det/2112.08089. [Google Scholar]
- Kim, M.; Bagliesi, M.; Bigongiari, G.; Bonechi, S.; Marrocchesi, P.; Maestro, P. Beam test performance of SiPM-based detectors for cosmic-ray experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 703, 177–182. [Google Scholar] [CrossRef]
- Marrocchesi, P.S.; Bagliesi, M.G.; Bonechi, S.; Bigongiari, G.; Brogi, P.; Collazuol, G.; Ferri, A.; Maestro, P.; Piemonte, C.; Sulaj, A.; et al. Charged Particle Detection with NUV-Sensitive SiPM in a Beam of Relativistic Ions. IEEE Trans. Nucl. Sci. 2014, 61, 2786–2793. [Google Scholar] [CrossRef]
- Otte, A.N.; Garcia, D.; Nguyen, T.; Purushotham, D. Characterization of three high efficiency and blue sensitive silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 846, 106–125. [Google Scholar] [CrossRef][Green Version]
- Licciulli, F.; Marzocca, C. An Active Compensation System for the Temperature Dependence of SiPM Gain. IEEE Trans. Nucl. Sci. 2015, 62, 228–235. [Google Scholar] [CrossRef]
- Kuznetsov, E. Temperature-compensated silicon photomultiplier. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 912, 226–230. [Google Scholar] [CrossRef]
- Ahmad, S.; Fleury, J.; de la Taille, C.; Seguin-Moreau, N.; Dulucq, F.; Martin-Chassard, G.; Callier, S.; Thienpont, D.; Raux, L. Triroc: A Multi-Channel SiPM Read-Out ASIC for PET/PET-ToF Application. IEEE Trans. Nucl. Sci. 2015, 62, 664–668. [Google Scholar] [CrossRef]
- Weeroc. 2021. Available online: https://www.weeroc.com/products/sipm-read-out/petiroc-2ax (accessed on 1 April 2022).
- Ahmad, S.; Blin, S.; Callier, S.; Cizel, J.B.; Conforti, S.; de La Taille, C.; Dulucq, F.; Fleury, J.; Martin-Chassard, G.; Raux, L.; et al. OMEGA SiPM readout ASICs. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 986, 164628. [Google Scholar] [CrossRef]
- Fleury, J.; Ahmad, S.; de La Taille, C.; Callier, S.; Raux, L. LIROC: Novative RadHard Front-End ASIC for Lidar, 2020. In Proceedings of the Public Deliverable for the ATTRACT Final Conference, Online, 22–23 September 2020. [Google Scholar]
- Perez, K.; von Doetinchem, P.; Aramaki, T.; Boezio, M.; Boggs, S.E.; Craig, W.W.; Fabris, L.; Fuke, H.; Gahbauer, F.; Hailey, C.J.; et al. Astro 2020 Science White Paper: Cosmic-ray Antinuclei as Messengers for Dark Matter. arXiv 2021, arXiv:astro-ph.HE/1904.05938. [Google Scholar]
- Andronic, A.; Wessels, J. Transition radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2012, 666, 130–147. [Google Scholar] [CrossRef][Green Version]
- Artru, X.; Yodh, G.B.; Mennessier, G. Practical theory of the multilayered transition radiation detector. Phys. Rev. D 1975, 12, 1289–1306. [Google Scholar] [CrossRef][Green Version]
- Brigida, M.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mazziotta, M.; Mirizzi, N.; et al. Investigation of the transition radiation produced by fast electrons crossing multifoil and fiber radiators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 550, 157–168. [Google Scholar] [CrossRef]
- Brigida, M.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mazziotta, M.; Mirizzi, N.; et al. A Silicon Transition Radiation Detector for space and accelerator applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 564, 115–125. [Google Scholar] [CrossRef]
- Brigida, M.; Caliandro, G.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mazziotta, M.; et al. Beam test results with a reduced scale Silicon Transition Radiation Detector prototype. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 577, 519–522. [Google Scholar] [CrossRef]
- Golden, R.L.; Stochaj, S.J.; Stephens, S.A.; Aversa, F.; Barbiellini, G.; Boezio, M.; Bravar, U.; Colavita, A.; Fratnik, F.; Schiavon, P.; et al. Measurement of the Positron to Electron Ratio in the Cosmic Rays above 5 GeV. Astrophys. J. 1996, 457. [Google Scholar] [CrossRef]
Superconducting Magnet | |
---|---|
Number of coils | 10 |
Total current per coil | 440 A |
Operating current | 244 A |
Inductance | 120 H |
Average magnetic flux density | 0.8 T |
Bending power | 1.1 Tm |
Cold mass | 1200 kg |
ALADInO Power Budget | |
---|---|
Time of Flight | 0.4 kW |
Calorimeter | 0.2 kW |
Si-Tracker | 1.4 kW |
Cryogenics | 1.0 kW |
Total | 3.0 kW |
ALADInO Mass Budget | |
---|---|
Calorimeter | ∼2.3 t |
Magnet and Cryogenics | ∼2.0 t |
Time of Flight + Si-Tracker | ∼1.5 t |
Electronics and Power | ∼0.5 t |
Total | <6.5 t |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adriani, O.; Altomare, C.; Ambrosi, G.; Azzarello, P.; Barbato, F.C.T.; Battiston, R.; Baudouy, B.; Bergmann, B.; Berti, E.; Bertucci, B.; Boezio, M.; Bonvicini, V.; Bottai, S.; Burian, P.; Buscemi, M.; Cadoux, F.; Calvelli, V.; Campana, D.; Casaus, J.; Contin, A.; D’Alessandro, R.; Dam, M.; De Mitri, I.; de Palma, F.; Derome, L.; Di Felice, V.; Di Giovanni, A.; Donnini, F.; Duranti, M.; Fiandrini, E.; Follega, F.M.; Formato, V.; Gargano, F.; Giovacchini, F.; Graziani, M.; Ionica, M.; Iuppa, R.; Loparco, F.; Marín, J.; Mariotto, S.; Marsella, G.; Martínez, G.; Martínez, M.; Martucci, M.; Masi, N.; Mazziotta, M.N.; Mergé, M.; Mori, N.; Munini, R.; Musenich, R.; Mussolin, L.; Nozzoli, F.; Oliva, A.; Osteria, G.; Pacini, L.; Paniccia, M.; Papini, P.; Pearce, M.; Perrina, C.; Picozza, P.; Pizzolotto, C.; Pospíšil, S.; Pozzato, M.; Quadrani, L.; Ricci, E.; Rico, J.; Rossi, L.; Schioppa, E.J.; Serini, D.; Smolyanskiy, P.; Sotgiu, A.; Sparvoli, R.; Surdo, A.; Tomassetti, N.; Vagelli, V.; Velasco, M.Á.; Wu, X.; Zuccon, P. Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO). Instruments 2022, 6, 19. https://doi.org/10.3390/instruments6020019
Adriani O, Altomare C, Ambrosi G, Azzarello P, Barbato FCT, Battiston R, Baudouy B, Bergmann B, Berti E, Bertucci B, Boezio M, Bonvicini V, Bottai S, Burian P, Buscemi M, Cadoux F, Calvelli V, Campana D, Casaus J, Contin A, D’Alessandro R, Dam M, De Mitri I, de Palma F, Derome L, Di Felice V, Di Giovanni A, Donnini F, Duranti M, Fiandrini E, Follega FM, Formato V, Gargano F, Giovacchini F, Graziani M, Ionica M, Iuppa R, Loparco F, Marín J, Mariotto S, Marsella G, Martínez G, Martínez M, Martucci M, Masi N, Mazziotta MN, Mergé M, Mori N, Munini R, Musenich R, Mussolin L, Nozzoli F, Oliva A, Osteria G, Pacini L, Paniccia M, Papini P, Pearce M, Perrina C, Picozza P, Pizzolotto C, Pospíšil S, Pozzato M, Quadrani L, Ricci E, Rico J, Rossi L, Schioppa EJ, Serini D, Smolyanskiy P, Sotgiu A, Sparvoli R, Surdo A, Tomassetti N, Vagelli V, Velasco MÁ, Wu X, Zuccon P. Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO). Instruments. 2022; 6(2):19. https://doi.org/10.3390/instruments6020019
Chicago/Turabian StyleAdriani, Oscar, Corrado Altomare, Giovanni Ambrosi, Philipp Azzarello, Felicia Carla Tiziana Barbato, Roberto Battiston, Bertrand Baudouy, Benedikt Bergmann, Eugenio Berti, Bruna Bertucci, Mirko Boezio, Valter Bonvicini, Sergio Bottai, Petr Burian, Mario Buscemi, Franck Cadoux, Valerio Calvelli, Donatella Campana, Jorge Casaus, Andrea Contin, Raffaello D’Alessandro, Magnus Dam, Ivan De Mitri, Francesco de Palma, Laurent Derome, Valeria Di Felice, Adriano Di Giovanni, Federico Donnini, Matteo Duranti, Emanuele Fiandrini, Francesco Maria Follega, Valerio Formato, Fabio Gargano, Francesca Giovacchini, Maura Graziani, Maria Ionica, Roberto Iuppa, Francesco Loparco, Jesús Marín, Samuele Mariotto, Giovanni Marsella, Gustavo Martínez, Manel Martínez, Matteo Martucci, Nicolò Masi, Mario Nicola Mazziotta, Matteo Mergé, Nicola Mori, Riccardo Munini, Riccardo Musenich, Lorenzo Mussolin, Francesco Nozzoli, Alberto Oliva, Giuseppe Osteria, Lorenzo Pacini, Mercedes Paniccia, Paolo Papini, Mark Pearce, Chiara Perrina, Piergiorgio Picozza, Cecilia Pizzolotto, Stanislav Pospíšil, Michele Pozzato, Lucio Quadrani, Ester Ricci, Javier Rico, Lucio Rossi, Enrico Junior Schioppa, Davide Serini, Petr Smolyanskiy, Alessandro Sotgiu, Roberta Sparvoli, Antonio Surdo, Nicola Tomassetti, Valerio Vagelli, Miguel Ángel Velasco, Xin Wu, and Paolo Zuccon. 2022. "Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO)" Instruments 6, no. 2: 19. https://doi.org/10.3390/instruments6020019