Systematic Trends in Hybrid-DFT Computations of BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) Hetero Structures
Abstract
:1. Introduction
2. Hybrid-DFT Calculation Details
3. Hybrid-DFT Computation Results
3.1. Pristine SrTiO3, BaTiO3, PbTiO3, SrZrO3 and PbZrO3 (001) Surfaces
3.2. BaTiO3/SrTiO3, PbTiO3/SrTiO3 and SrZrO3/PbZrO3 (001) Interfaces
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eglitis, R.I.; Vanderbilt, D. Ab initio calculations of the atomic and electronic structure of CaTiO3 (001) and (011) surfaces. Phys. Rev. B 2008, 78, 155420. [Google Scholar] [CrossRef] [Green Version]
- Eglitis, R.I.; Vanderbilt, D. Ab initio calculations of BaTiO3 and PbTiO3 (001) and (011) surface structures. Phys. Rev. B 2007, 76, 155439. [Google Scholar] [CrossRef] [Green Version]
- Erdman, N.; Poeppelmeier, K.R.; Asta, M.; Warschkov, O.; Ellis, D.E.; Marks, L.D. The structure and chemistry of the TiO2-rich surface of SrTiO3 (001). Nature 2002, 419, 55–58. [Google Scholar] [CrossRef]
- Dawber, M.; Rabe, K.M.; Scott, J.F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 2005, 77, 1083–1130. [Google Scholar] [CrossRef] [Green Version]
- Piyanzina, I.I.; Pavlov, D.P.; Jagličić, Z.; Shulyaev, D.A.; Tayurskii, D.A.; Kabanov, V.V.; Mamin, R.F. Structural and magnetic properties of ferroelectric/dielectric BaTiO3/LaMnO3 and BaTiO3/SrTiO3 heterostructures. Ferroelectrics 2021, 575, 144–150. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Kleperis, J.; Purans, J.; Popov, A.I.; Jia, R. Ab initio calculations of CaZrO3 (011) surfaces: Systematic trends in polar (011) surface calculations of ABO3 perovskites. J. Mater. Sci. 2020, 55, 203–217. [Google Scholar] [CrossRef]
- Danyushkina, L.A.; Khaliullina, A.S.; Kuimov, V.M.; Osinkin, D.A.; Antonov, B.D.; Pankratov, A.A. Influence of modification of chemical solution deposition on morphology and conductivity of CaZr0.9Y0.1O3−δ films. Solid State Ion. 2019, 329, 1–7. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Popov, A.I. Ab initio calculations for the polar (001) surfaces of YAlO3. Nucl. Instr. Meth. B 2018, 434, 1–5. [Google Scholar] [CrossRef]
- Brik, M.G.; Ma, C.G.; Krasnenko, V. First-principles calculations of the structural and electronic properties of the cubic CaZrO3 (001) surfaces. Surf. Sci. 2013, 608, 146–153. [Google Scholar] [CrossRef]
- Eglitis, R.I. Comparative ab initio calculations of SrTiO3 and CaTiO3 polar (111) surfaces. Phys. Stat. Sol. B 2015, 252, 635–642. [Google Scholar] [CrossRef]
- Ahmadi, F.; Aragi, H. Coexistence of magnetism and ferroelectricity in (PbTiO3)m/(BaTiO3)n superlattices. Superlattices Microstruct. 2020, 140, 106427. [Google Scholar] [CrossRef]
- Jia, W.; Vikhnin, V.S.; Liu, H.; Kapphan, S.; Eglitis, R.; Usvyat, D. Critical effects in optical response due to charge transfer vibronic excitions and their structure in perovskite-like systems. J. Lumin. 1999, 83, 109–113. [Google Scholar] [CrossRef]
- Zhang, X.; Demkov, A.A.; Li, H.; Hu, X.; Wei, Y.; Kulik, J. Atomic and electronic structure of the Si/SrTiO3 interface. Phys. Rev. B 2003, 68, 125323. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Purans, J.; Popov, A.I.; Bocharov, D.; Chekhovska, A.; Jia, R. Ab initio computations of O and AO as well as ReO2, WO2 and BO2-terminated ReO3, WO3, BaTiO3, SrTiO3 and BaZrO3 (001) surfaces. Symmetry 2022, 14, 1050. [Google Scholar] [CrossRef]
- Raza, S.; Zhang, R.; Zhang, N.; Li, Z.; Liu, L.; Zhang, F.; Wang, D.; Jia, C.L. ATiO3/TiO (A=Pb, Sn) superlattice: Bridging ferroelectricity and conductivity. Comput. Condens. Matter 2020, 25, e00491. [Google Scholar] [CrossRef]
- Borstel, G.; Eglitis, R.I.; Kotomin, E.A.; Heifets, E. Modelling of defects and surfaces in perovskite ferroelectrics. Phys. Stat. Sol. B 2003, 236, 253–264. [Google Scholar] [CrossRef]
- Cohen, R.E. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358, 136–138. [Google Scholar] [CrossRef]
- Zhong, W.; Vanderbilt, D.; Rabe, K.M. Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett. 1994, 73, 1861–1864. [Google Scholar] [CrossRef] [Green Version]
- Eglitis, R.I.; Kotomin, E.A.; Borstel, G. Quantum chemical modelling of perovskite solid solutions. J. Phys. Condens. Matter 2000, 12, L431–L434. [Google Scholar] [CrossRef] [Green Version]
- Sambrano, J.R.; Longo, V.M.; Longo, E.; Taft, C.A. Electronic and structural properties of the (001) SrZrO3 surface. J. Mol. Struct. THEOCHEM 2007, 813, 49–56. [Google Scholar] [CrossRef]
- Kennedy, B.J.; Howard, C.J. High-temperature phase transition in SrZrO3. Phys. Rev. B 1999, 59, 4023–4027. [Google Scholar] [CrossRef]
- Maniwa, H.; Sawaguchi, E.; Hoshino, S. Antiferroelectric structure of lead zirconate. Phys. Rev. 1951, 83, 1078. [Google Scholar]
- Shirane, G.; Sawaguchi, E.; Takagi, Y. Dielectric properties of lead zirconate. Phys. Rev. 1951, 84, 476–481. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Yang, T.; Zhang, S. Ultra high energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 2019, 29, 1807321. [Google Scholar] [CrossRef]
- Chen, M.J.; Ning, X.K.; Wang, S.F.; Fu, G.S. Significant enhancement of energy storage density and polarization in self-assembled PbZrO3: NiO nano-columnar composite films. Nanoscale 2019, 11, 1914–1920. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F. High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. Appl. Phys. Rev. 2012, 111, 031301. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, M.T. Polymer-Ceramic Composites of O-3 Connectivity for Circuits in Electronics: A Review. Int. J. Appl. Ceram. Technol. 2010, 7, 415–434. [Google Scholar] [CrossRef]
- Tan, G.; Wang, S.; Zhu, Y.; Zhou, L.; Yu, P.; Wang, X.; He, T.; Chen, J.; Mao, C.; Ning, C. Surface-selective preferential production of reactive oxygen species on piezoelectric ceramics for bacterial killing. ACS Appl. Mater. Interfaces 2016, 8, 24306–24309. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Vaish, R.; Powar, S. Surface-selective bactericidal effect on poled ferroelectric materials. J. Appl. Phys. 2018, 124, 014901. [Google Scholar] [CrossRef]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A.; Rödel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305. [Google Scholar] [CrossRef] [Green Version]
- Domen, K.; Kudo, A.; Onishi, T.; Kosugi, N.; Kuroda, H. Photocatalytic decomposition of water into hydrogen and oxygen over nickel (II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J. Phys. Chem. 1986, 90, 292–295. [Google Scholar] [CrossRef]
- Ahuja, S.; Kutty, T.R.N. Nanoparticles of SrTiO3 prepared by gel to crystallite conversion and their photocatalytic activity in the mineralization of phenol. J. Photochem. Photobiol. A Chem. 1996, 97, 99–107. [Google Scholar] [CrossRef]
- Samsonidze, G.; Kozinsky, B. Accelerated Screening of Thermoelectric Materials by First-Principles Computations of Electron-Phonon Scattering. Adv. Energy Mater. 2018, 8, 1800246. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Wang, X.; Kuang, Y.; Huang, B. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys. Rev. B 2015, 92, 115202. [Google Scholar] [CrossRef] [Green Version]
- Xi, L.; Zhang, Y.B.; Shi, Z.Y.; Yang, J.; Shi, X.; Chen, L.D.; Zhang, W.; Yang, J.; Sing, D.J. Chemical bonding, conductive network, and thermoelectric performance of the ternary semi conductors Cu2SnX3 (X = Se, S) from first principles. Phys. Rev. B 2012, 86, 155201. [Google Scholar] [CrossRef]
- Tian, Z.; Garg, J.; Esfarjani, K.; Shiga, T.; Shiomi, J.; Chen, G. Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first principles calculations. Phys. Rev. B 2012, 85, 184303. [Google Scholar] [CrossRef] [Green Version]
- Orhan, E.; Pontes, F.M.; Pinteiro, C.D.; Boschi, T.M.; Leite, E.R.; Pizani, P.S.; Beltrán, A.; Andrés, J.; Varela, J.A.; Longo, E. Origin of photoluminescence in SrTiO3: A combined experimental and theoretical study. J. Solid State Chem. 2004, 177, 3879–3885. [Google Scholar] [CrossRef]
- Grigorjeva, L.; Millers, D.K.; Pankratov, V.; Williams, R.T.; Eglitis, R.I.; Kotomin, E.A.; Borstel, G. Experimental and theoretical studies of polaron optical properties in KNbO3 perovskite. Solid State Commun. 2004, 129, 691–696. [Google Scholar] [CrossRef]
- Devreese, J.T.; Fomin, V.M.; Pokatilov, E.P.; Kotomin, E.A.; Eglitis, R.; Zhukovskii, Y.F. Theory of bound polarons in oxide compounds. Phys. Rev. B 2001, 63, 184304. [Google Scholar] [CrossRef] [Green Version]
- Leonelli, R.; Brebner, J.L. Evidence for bimolecular recombination in the luminescence spectra of SrTiO3. Solid State Commun. 1985, 54, 505–507. [Google Scholar] [CrossRef]
- Makarova, M.V.; Prokhorov, A.; Stupak, A.; Kopeček, J.; Drahokoupil, J.; Trepakov, V.; Dejneka, A. Synthesis and Magnetic Properties of Carbon Doped and Reduced SrTiO3 Nanoparticles. Crystals 2022, 12, 1275. [Google Scholar] [CrossRef]
- Meng, J.; Huang, Y.; Zhang, W.; Du, Z.; Zhu, Z.; Zou, G. Photoluminescence in nanocrystalline BaTiO3 and SrTiO3. Phys. Lett. A 1995, 205, 72–76. [Google Scholar] [CrossRef]
- Rinnert, H.; Vergat, M.; Marchal, G.; Burneau, A. Intense visible photoluminescence in amorphous SiOx and SiOx:H films prepared by evaporation. Appl. Phys. Lett. 1998, 72, 3157. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.F. Status report on ferroelectric memory materials. Integr. Ferroelectr. 1998, 20, 15–23. [Google Scholar] [CrossRef]
- Millis, A.J. Lattice effects in magnetoresistive manganese perovskites. Nature 1998, 392, 147–150. [Google Scholar] [CrossRef]
- Wessels, B.W. Metal-organic chemical vapor deposition of ferroelectric oxide thin films for electronic and optical applications. Annu. Rev. Mater. Sci. 1995, 25, 525–546. [Google Scholar] [CrossRef]
- Farlenkov, A.S.; Ananyev, M.V.; Eremin, V.A.; Porotnikova, N.M.; Kurumchin, E.K.; Melekh, B.T. Oxygen isotope exchange in doped calcium and barium zirconates. Solid State Ion. 2016, 290, 108–115. [Google Scholar] [CrossRef]
- Ananyev, M.V.; Bershitskaya, N.M.; Plaksin, S.V.; Kurumchin, E.K. Phase equilibriums, oxygen exchange kinetics and diffusion in oxides CaZr1−xScxO3−x/2−δ. Russ. J. Electrochem. 2012, 48, 879–886. [Google Scholar] [CrossRef]
- Celik, F.A. Electronic structure of two-dimensional-layered PbTiO3 perovskite crystal: An extended tight-binding study based on DFT. Bull. Mater. Sci. 2022, 45, 108. [Google Scholar] [CrossRef]
- Eglitis, R.I. Ab initio calculations of SrTiO3, BaTiO3, PbTiO3, CaTiO3, SrZrO3, PbZrO3 and BaZrO3 (001), (011) and (111) surfaces as well as F centers, polarons, KTN solid solutions and Nb impurities therein. Int. J. Mod. Phys. B 2014, 28, 1430009. [Google Scholar] [CrossRef] [Green Version]
- Noor, N.A.; Mahmood, Q.; Rashid, M.; Haq, B.V.; Laref, A.; Ahmad, S.A. Ab-initio study of thermodynamic stability, thermoelectric and optical properties of perovskites ATiO3 (A = Pb, Sn). J. Solid State Chem. 2018, 263, 115–122. [Google Scholar] [CrossRef]
- Shimada, T.; Tomoda, S.; Kitamura, T. Ab initio study of ferroelectricity in edged PbTiO3 nanowires under axial tension. Phys. Rev. B 2009, 79, 024102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.M.; Pang, Q.; Xu, K.W.; Ji, V. First-principles study of the (110) polar surface of cubic PbTiO3. Comput. Mater. Sci. 2009, 44, 1360–1365. [Google Scholar] [CrossRef]
- Lazaro, S.D.; Longo, E.; Sambrano, J.R.; Beltrán, A. Structural and electronic properties of PbTiO3 slabs: A DFT periodic study. Surf. Sci. 2004, 552, 149–159. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Purans, J.; Popov, A.I.; Jia, R. Tendencies in ABO3 perovskite and SrF2, BaF2 and CaF2 bulk and surface F-center ab initio computations at high symmetry cubic structure. Symmetry 2021, 13, 1920. [Google Scholar] [CrossRef]
- Gao, H.; Yue, Z.; Liu, Y.; Hu, J.; Li, X. A first-principles study on the multiferroic property of two-dimensional BaTiO3 (001) ultrathin film with surface Ba vacancy. Nanomaterials 2019, 9, 269. [Google Scholar] [CrossRef] [Green Version]
- Eglitis, R.I.; Purans, J.; Gabrusenoks, J.; Popov, A.I.; Jia, R. Comparative ab initio calculation of ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) surfaces. Crystals 2020, 10, 745. [Google Scholar] [CrossRef]
- Zhong, M.; Zeng, W.; Liu, F.S.; Tang, B.; Liu, Q.J. First-principles study of the atomic structures, electronic properties, and surface stability of BaTiO3 (001) and (011) surfaces. Surf. Interface Anal. 2019, 51, 1021–1032. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Purans, J.; Jia, R. Comparative Hybrid Hartree-Fock-DFT Calculations of WO2-Terminated Cubic WO3 as well as SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces. Crystals 2021, 11, 455. [Google Scholar] [CrossRef]
- Costa-Amaral, R.; Gohda, Y. First-principles study of the adsorption of 3d transition metals on BaO- and TiO2-terminated cubic-phase BaTiO3 (001) surfaces. J. Chem. Phys. 2020, 152, 204701. [Google Scholar] [CrossRef]
- Sokolov, M.; Eglitis, R.I.; Piskunov, S.; Zhukovskii, Y.F. Ab initio hybrid DFT calculations of BaTiO3 bulk and BaO-terminated (001) surface F-centers. Int. J. Mod. Phys. B 2017, 31, 1750251. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Piskunov, S. First principles calculations of SrZrO3 bulk and ZrO2-terminated (001) surface F centers. Comput. Condens. Matter 2016, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Charlton, G.; Brennan, S.; Muryn, C.A.; McGrath, R.; Norman, D.; Turner, T.S.; Thorton, G. Surface relaxation of SrTiO3 (001). Surf. Sci. 2000, 457, L376–L380. [Google Scholar] [CrossRef]
- Liang, Y.; Bonnell, D.A. Atomic structures of reduced SrTiO3 (001) surfaces. Surf. Sci. Lett. 1993, 285, L510–L516. [Google Scholar]
- Castell, M.R. Scanning tunneling microscopy of reconstructions on the SrTiO3 (001) surface. Surf. Sci. 2002, 505, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E. Hybrid HF-DFT comparative study of SrZrO3 and SrTiO3 (001) surface properties. Phys. Stat. Sol. B 2006, 243, 2756–2763. [Google Scholar] [CrossRef]
- Iles, N.; Finocchi, F.; Khodja, K.D. A systematic study of ideal and double layered reconstructions of ABO3 (001) surfaces (A = Sr, Ba; B = Ti, Zr) from first principles. J. Phys. Condens. Matter 2010, 22, 305001. [Google Scholar] [CrossRef]
- Sopiha, K.V.; Malyi, O.I.; Persson, C.; Wu, P. Suppression of surface states at cubic perovskite (001) surfaces by CO2 adsorption. Phys. Chem. Chem. Phys. 2018, 20, 18828–18836. [Google Scholar] [CrossRef] [Green Version]
- Pilania, G.; Tan, D.Q.; Cao, Y.; Venkataramani, V.S.; Chen, Q.; Ramprasad, R. Ab initio study of antiferroelectric PbZrO3 (001) surfaces. J. Mater. Sci. 2009, 44, 5249–5255. [Google Scholar] [CrossRef]
- Ko, D.L.; Hsin, T.; Lai, Y.H.; Ho, S.Z.; Zheng, Y.; Huang, R.; Pan, H.; Chen, Y.C.; Chu, Y.H. High-stability transparent flexible energy storage based on PbZrO3 muscovite heterostructure. Nano Energy 2021, 87, 106149. [Google Scholar] [CrossRef]
- Guo, X.; Ge, J.; Ponchel, F.; Remiens, D.; Chen, Y.; Dong, X.; Wang, G. Effect of Sn substitution on the energy storage properties of high (001)-oriented PbZrO3 thin films. Thin Solid Film. 2017, 632, 93–96. [Google Scholar] [CrossRef]
- Qiao, L.; Song, C.; Sua, Y.; Fayaz, M.U.; Lu, T.; Yin, S.; Chen, C.; Xu, H.; Ren, T.L.; Pan, F. Observation of negative capacitance in antiferroelectric PbZrO3 Films. Nat. Commun. 2021, 12, 4215. [Google Scholar] [CrossRef] [PubMed]
- Delugas, P.; Filipetti, A.; Gadaleta, A.; Pallecchi, I.; Marre, D.; Fiorentini, V. Large band offset as a driving force of two-dimensional electron confinement: The case of SrTiO3/SrZrO3 interface. Phys. Rev. B 2013, 88, 115304. [Google Scholar] [CrossRef] [Green Version]
- Piskunov, S.; Eglitis, R.I. First principles hybrid DFT calculations of BaTiO3/SrTiO3 (001) interface. Solid State Ion. 2015, 274, 29–33. [Google Scholar] [CrossRef]
- Al-Aqtash, N.; Alsaad, A.; Sabirianov, R. Ferroelectric properties of BaZrO3/PbZrO3 and SrZrO3/PbZrO3 superlattices: An ab-initio study. J. Appl. Phys. 2014, 116, 074112. [Google Scholar] [CrossRef]
- Eglitis, R.; Kruchinin, S.P. Ab initio calculations of ABO3 perovskite (001), (011) and (111) nano-surfaces, interfaces and defects. Mod. Phys. Lett. B 2020, 34, 2040057. [Google Scholar] [CrossRef]
- Qi, H.; Chen, X.; Benckiser, E.; Wu, M.; Cristiani, G.; Logvenov, G.; Keimer, B.; Kaiser, V. Formation mechanism of Ruddlesden-Popper faults in compressive-strained ABO3 perovskite superlattices. Nanoscale 2021, 13, 20663–20669. [Google Scholar] [CrossRef] [PubMed]
- Aso, R.; Kan, D.; Shimakawa, Y.; Kurata, H. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 2013, 3, 2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piskunov, S.; Eglitis, R.I. Comparative ab initio calculations of SrTiO3/BaTiO3 and SrZrO3/PbZrO3 (001) heterostructures. Nucl. Instr. Methods B 2016, 374, 20–23. [Google Scholar] [CrossRef]
- Fredrickson, K.D.; Demkov, A.A. Switchable conductivity at the ferroelectric interface: Nonpolar oxides. Phys. Rev. B 2015, 91, 115126. [Google Scholar] [CrossRef] [Green Version]
- Eglitis, R.I.; Piskunov, S.; Zhukovskii, Y.F. Ab initio calculations of PbTiO3/SrTiO3 (001) heterostructures. Phys. Stat. Sol. C 2016, 13, 913–920. [Google Scholar]
- Lebedev, A.I. Ground state and properties of ferroelectric superlattices based on crystals of the perovskite family. Phys. Solid State 2010, 52, 1448–1462. [Google Scholar] [CrossRef]
- Lebedev, A.I. Band offsets in heterojunctions formed by oxides with cubic perovskite structure. Phys. Solid State 2014, 56, 1039–1047. [Google Scholar] [CrossRef]
- Bi, Z.; Uberuaga, B.P.; Vernon, L.J.; Fu, E.; Wang, Y.; Li, N.; Wang, H.; Misra, A.; Jia, Q.X. Radiation damage in heteroepitaxial BaTiO3 thin films on SrTiO3 under Ne ion irradiation. J. Appl. Phys. 2013, 113, 023513. [Google Scholar] [CrossRef]
- Stepkova, V.; Marton, P.; Setter, N.; Hlinka, J. Closed-circuit domain quadruplets in BaTiO3 nanorods embedded in a SrTiO3 film. Phys. Rev. B 2014, 89, 060101. [Google Scholar] [CrossRef] [Green Version]
- Piyanzina, I.I.; Eyert, V.; Lysogorskiy, Y.V.; Tayurskii, D.A.; Kopp, T. Oxygen vacancies and hydrogen doping in LaAlO3/SrTiO3 heterostructures: Electronic properties and impact on surface and interface reconstruction. J. Phys. Condens. Matter 2019, 31, 295601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piyanzina, I.I.; Pavlov, D.P.; Zagidullin, R.R.; Tayurskii, D.A.; Mamin, R.F. Structural and electronic properties of heterointerface composed of non-polar oxides: SrTiO3 and ferroelectric BaTiO3. Ferroelectrics 2019, 542, 7–12. [Google Scholar] [CrossRef]
- Piyanzina, I.I.; Lysogorskiy, Y.V.; Tayurskii, D.A.; Mamin, R.F. Electronic Properties of a Two-Dimensional Electron Gas at the Interface between Transition Metal Complex Oxides. Bull. Russ. Acad. Sci. Phys. 2018, 82, 234–237. [Google Scholar] [CrossRef]
- Nova, T.F.; Disa, A.S.; Fechner, M.; Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 2019, 364, 1075–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.C.; Ribeiro, R.A.P.; Longo, E.; Bomio, M.R.D.; Motta, F.V.; Lazaro, S.R.D. Temperature dependence on phase evolution in BaTiO3 polytypes studied using ab initio calculations. Int. J. Quantum Chem. 2020, 120, e26054. [Google Scholar] [CrossRef]
- Zelezny, V.; Chvostova, D.; Simek, D.; Maca, F.; Masek, J.; Setter, N.; Huang, Y.H. The variation of PbTiO3 bandgap at ferroelectric phase transition. J. Phys. Condens. Matter 2016, 28, 025501. [Google Scholar] [CrossRef] [PubMed]
- Ligny, D.D.; Richet, P. High-temperature heat capacity and thermal expansion of perovskites. Phys. Rev. B 1996, 53, 3013–3022. [Google Scholar] [CrossRef]
- Bungaro, C.; Rabe, K.M. Coexistence of antiferrodistortive and ferroelectric distortions at the BaTiO3 (001) surface. Phys. Rev. B 2005, 71, 035420. [Google Scholar] [CrossRef]
- Ghorbani, E.; Villa, L.; Erhart, P.; Klein, A.; Albe, K. Self-consistent calculations of charge self-trapping energies: A comparative study of polaron formation and migration in PbTiO3. Phys. Rev. Mater. 2022, 6, 074410. [Google Scholar] [CrossRef]
- Varley, J.B.; Janotti, A.; Franchini, C.; Walle, C.G.V. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys. Rev. B 2012, 85, 081109. [Google Scholar] [CrossRef] [Green Version]
- Eglitis, R.I.; Kotomin, E.A.; Trepakov, V.A.; Kapphan, S.E.; Borstel, G. Quantum chemical modelling of electron polarons and ‘green’ luminescence in PbTiO3 perovskite crystals. J. Phys. Condens. Matter 2002, 14, L647. [Google Scholar] [CrossRef] [Green Version]
- Dovesi, R.; Saunders, V.R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C.M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N.M.; Bush, I.J.; et al. CRYSTAL-2017 User Manual; University of Torino: Torino, Italy, 2017. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Wang, Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B 1986, 33, 8800–8802, Erratum in Phys. Rev. B 1989, 40, 3399. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Shi, H.; Eglitis, R.I.; Borstel, G. Ab initio calculations of the CaF2 electronic structure and F centers. Phys. Rev. B 2005, 72, 045109. [Google Scholar] [CrossRef]
- Vassilyeva, A.F.; Eglitis, R.I.; Kotomin, E.A.; Dauletbekova, A.K. Ab initio calculations of MgF2 (001) and (011) surface structure. Phys. B Condens. Matter 2010, 405, 2125–2127. [Google Scholar] [CrossRef]
- Rubloff, G.W. Far-Ultraviolet Reflectence Spectra and the Electronic Structure of Ionic Crystals. Phys. Rev. B 1972, 5, 662–684. [Google Scholar] [CrossRef]
- Perdew, J.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982. [Google Scholar] [CrossRef]
- Perdew, J.P. Orbital functional for exchange and correlation: Self-interaction correction to the local density approximation. Chem. Phys. Lett. 1979, 64, 127–130. [Google Scholar] [CrossRef]
- Dovesi, R.; Orlando, R.; Roetti, C.; Pisani, C.; Saunders, V.R. The Periodic Hartree-Fock Method and Its Implementation in the Crystal Code. Phys. Stat. Sol. B 2000, 217, 63–88. [Google Scholar] [CrossRef]
- Lisitsyn, V.M.; Lisitsyna, L.A.; Popov, A.I.; Kotomin, E.A.; Abuova, F.U.; Akilbekov, A.; Maier, J. Stabilization of primary mobile radiation defects in MgF2 crystals. Nucl. Instr. Methods B 2016, 374, 24–28. [Google Scholar] [CrossRef]
- Heifets, E.; Kotomin, E.A.; Maier, J. Semi-empirical simulations of surface relaxation for perovskite titanates. Surf. Sci. 2000, 462, 19–35. [Google Scholar] [CrossRef]
- Heifets, E.; Eglitis, R.I.; Kotomin, E.A.; Maier, J.; Borstel, G. Ab initio modeling of surface structure for SrTiO3 perovskite crystals. Phys. Rev. B 2001, 64, 235417. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.; Heifets, E.; Merinov, B. Ab initio simulation of the BaZrO3 (001) surface structure. Surf. Sci. 2007, 601, 490–497. [Google Scholar] [CrossRef]
- Heifets, E.; Dorfman, S.; Fuks, D.; Kotomin, E.; Gordon, A. Atomistic simulation of surface relaxation. J. Phys. Condens. Matter 1998, 10, L347. [Google Scholar] [CrossRef]
- Pilania, G.; Ramprasad, R. Adsorption of atomic oxygen on cubic PbTiO3 and LaMnO3 (001) surfaces. A density functional theory study. Surf. Sci. 2010, 604, 1889–1893. [Google Scholar] [CrossRef]
- Fechner, M.; Ostanin, S.; Mertig, I. Effect of the surface polarization in polar perovskites studied from first principles. Phys. Rev. B 2008, 77, 094112. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, H.L.; Ganesh, P.; Cooper, V.R.; Xu, H.; Kent, P.R.C. Understanding the interactions between oxygen vacancies at SrTiO3 (001) surfaces. Phys. Rev. B 2014, 90, 064106. [Google Scholar] [CrossRef]
- Piskunov, S.; Heifets, E.; Eglitis, R.I.; Borstel, G. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: An ab initio HF/DFT study. Comput. Mater. Sci. 2004, 29, 165–178. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1984, 82, 299–310. [Google Scholar] [CrossRef]
- Mayer, I. Bond Order and Valence: Relations to Mulliken’s Population Analysis. Int. J. Quantum Chem. 1984, 26, 151–154. [Google Scholar] [CrossRef]
- Bochicchio, R.C.; Reale, H.F. On the nature of crystalline bonding: Extension of statistical population analysis to two- and three- dimensional crystalline systems. J. Phys. B 1993, 26, 4871–4883. [Google Scholar] [CrossRef]
- Shi, H.; Chang, L.; Jia, R.; Eglitis, R.I. Ab initio calculations of the transfer and aggregation of F centers in CaF2. J. Phys. Chem. C 2012, 116, 4832–4839. [Google Scholar] [CrossRef]
- Mabud, S.A.; Glazer, A.M. Lattice parameters and birefringence in PbTiO3 single crystals. J. Appl. Cryst. 1979, 12, 49–53. [Google Scholar] [CrossRef]
- Edwards, J.W.; Speiser, R.; Johnston, H.L. Structure of Barium Titanate at Elevated Temperatures. J. Am. Chem. Soc. 1951, 73, 2934–2935. [Google Scholar] [CrossRef]
- Okazaki, A.; Scheel, H.J.; Müller, K.A. The lattice constant vs. temperature relation around the 105 K transition of a flux-grown SrTiO3 crystal. Phase Trans. 1985, 5, 207–218. [Google Scholar]
- Aoyagi, S.; Kuroiwa, Y.; Sawada, A.; Tanaka, H.; Nishibori, E.; Takata, M.; Sakata, M. Direct observation of covalency between O and disordered Pb in cubic PbZrO3. J. Phys. Soc. Jpn. 2002, 71, 2353–2356. [Google Scholar] [CrossRef]
- Benthem, K.; Elsässer, C.; French, R.H. Bulk electronic structure of SrTiO3: Experiment and theory. J. Appl. Phys. 2001, 90, 6156–6164. [Google Scholar] [CrossRef] [Green Version]
- Wemple, S.H. Polarization Fluctuations and the Optical-Absorption Edge in BaTiO3. Phys. Rev. B 1970, 2, 2679–2689. [Google Scholar] [CrossRef]
- Robertson, J. Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vacuum. Sci. Technol. B 2000, 18, 1785–1791. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Popov, A.I. Systematic trends in (001) surface ab initio calculations of ABO3 perovskites. J. Saudi Chem. Soc. 2018, 22, 459–468. [Google Scholar] [CrossRef]
- Eglitis, R.I. Comparative First-Principles Calculations of SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001), (011) and (111) Surfaces. Ferroelectrics 2015, 483, 53–67. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Vanderbilt, D. First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces. Phys. Rev. B 2008, 77, 195408. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Rohlfing, M. First-principles calculations of the atomic and electronic structure of SrZrO3 and PbZrO3 (001) and (011) surfaces. J. Phys.: Condens. Matter 2010, 22, 415901. [Google Scholar]
- Wang, Y.X.; Arai, M. First-principles study of the (001) surface of cubic SrZrO3. Surf. Sci. 2007, 601, 4092–4096. [Google Scholar] [CrossRef]
- Bickel, N.; Schmidt, G.; Heinz, K.; Müller, K. Ferroelectric relaxation of the SrTiO3 (100) surface. Phys. Rev. Lett. 1993, 62, 2009–2012. [Google Scholar] [CrossRef]
- Hikita, T.; Hanada, T.; Kudo, M.; Kawai, M. Structure and electronic state of the TiO2 and SrO terminated SrTiO3 (100) surfaces. Surf. Sci. 1993, 287, 377–381. [Google Scholar] [CrossRef]
- Piskunov, S.; Kotomin, E.A.; Heifets, E.; Maier, J.; Eglitis, R.I.; Borstel, G. Hybrid DFT calculations of the atomic and electronic structure for ABO3 perovskite (001) surfaces. Surf. Sci. 2005, 575, 75–88. [Google Scholar] [CrossRef]
- Eglitis, R.I. Ab initio calculations of CaZrO3, BaZrO3, PbTiO3 and SrTiO3 (001), (011) and (111) surfaces as well as their (001) interfaces. Integr. Ferroelectr. 2019, 196, 7–15. [Google Scholar] [CrossRef]
- Slassi, A.; Hammi, M.; Rhazouani, O.E. Surface Relaxations, Surface Energies and Electronic Structures of BaSnO3 (001) Surfaces: Ab initio Calculations. J. Electron. Mater. 2017, 46, 4133–4139. [Google Scholar] [CrossRef]
- Heifets, E.; Dorfman, S.; Fuks, D.; Kotomin, E. Atomistic simulation of the [001] surface structure in BaTiO3. Thin Solid Film. 1997, 296, 76–78. [Google Scholar] [CrossRef]
- Heifets, E.; Dorfman, S.; Fuks, D.; Kotomin, E.; Gordon, A. [001] Surface Structure in SrTiO3—Atomistic Study. Surf. Rev. Lett. 1998, 5, 341–345. [Google Scholar] [CrossRef]
- Sorokine, A.; Bocharov, D.; Piskunov, S.; Kashcheyevs, V. Electronic charge redistribution in LaAlO3 (001) thin films deposited at SrTiO3 substrate: First-principles analysis and the role of stoichiometry. Phys. Rev. B 2012, 86, 155410. [Google Scholar] [CrossRef]
Bulk Properties | PbTiO3 | BaTiO3 | SrTiO3 | PbZrO3 | SrZrO3 | |
---|---|---|---|---|---|---|
Ion | Property | B3PW | B3PW | B3PW | B3LYP | B3LYP |
A | Q | +1.354 | +1.797 | +1.871 | +1.368 | +1.880 |
P | +0.016 | −0.034 | −0.010 | +0.030 | +0.002 | |
O | Q | −1.232 | −1.388 | −1.407 | −1.160 | −1.351 |
P | +0.098 | +0.098 | +0.088 | +0.106 | +0.092 | |
B | Q | +2.341 | +2.367 | +2.351 | +2.111 | +2.174 |
Solid | Structure at RT | Exp. Γ-Γ Band Gap (eV) | Ab initio Γ-Γ Band Gap |
---|---|---|---|
SrTiO3 | Cubic phase | 3.75 eV [124] | 3.96 eV |
BaTiO3 | Tetragonal ↔ orthorhombic phase at 278 K | 3.38 eV (//c); 3.27 eV (⊥ c) [125] | 3.55 eV |
PbTiO3 | Tetragonal phase | 3.4 eV [126] | 4.32 eV |
Solid | PbTiO3 | BaTiO3 | SrTiO3 | PbZrO3 | SrZrO3 | |
---|---|---|---|---|---|---|
Layer | Ion | TiO2-t. | TiO2-t. | TiO2-t. | ZrO2-t. | ZrO2-t. |
1 | B | −2.81 | −3.08 | −2.25 | −2.37 | −1.38 |
O | +0.31 | −0.35 | −0.13 | −1.99 | −2.10 | |
2 | A | +5.32 | +2.51 | +3.55 | +4.36 | +2.81 |
O | +1.28 | +0.38 | +0.57 | +1.04 | +0.91 | |
3 | B | - | - | - | −0.47 | −0.04 |
O | - | - | - | −0.28 | −0.05 |
Solid | PbTiO3 | BaTiO3 | SrTiO3 | PbZrO3 | SrZrO3 | |
---|---|---|---|---|---|---|
Layer | Ion | PbO-t. | BaO-t. | SrO-t. | PbO-t. | SrO-t. |
1 | A | −3.82 | −1.99 | −4.84 | −5.69 | −7.63 |
O | −0.31 | −0.63 | +0.84 | −2.37 | −0.86 | |
2 | B | +3.07 | +1.74 | +1.75 | +0.57 | +0.86 |
O | +2.30 | +1.40 | +0.77 | +0.09 | −0.05 | |
3 | A | - | - | - | −0.47 | −1.53 |
O | - | - | - | −0.47 | −0.45 |
Solid | Functional | Termination | s | Δd12 | Δd23 |
---|---|---|---|---|---|
PbZrO3 | B3LYP | ZrO2 | +0.38 | −6.73 | +4.83 |
SrZrO3 | B3LYP | ZrO2 | −0.72 | −4.19 | +2.85 |
LDA [131] | ZrO2 | −0.7 | −6.1 | +4.2 | |
PbTiO3 | B3PW | TiO2-term. | +3.12 | −8.13 | +5.32 |
BaTiO3 | B3PW | TiO2-term. | +2.73 | −5.59 | +2.51 |
SrTiO3 | B3PW | TiO2-term. | +2.12 | −5.79 | +3.55 |
LEED [132] | TiO2-term. | +2.1 ± 2 | +1 ± 1 | −1 ± 1 | |
RHEED [133] | TiO2-term. | +2.6 | +1.8 | +1.3 |
PbZrO3 | SrZrO3 | PbTiO3 | BaTiO3 | SrTiO3 | |||
---|---|---|---|---|---|---|---|
Layer | Prop. | Ion | ZrO2-t. | ZrO2-t. | TiO2-t. | TiO2-t. | TiO2-t. |
1 | D | B | −0.100 | −0.058 | −0.111 | −0.123 | −0.088 |
Q | +2.165 | +2.196 | +2.279 | +2.307 | +2.291 | ||
P | +0.116 | +0.114 | +0.114 | +0.126 | +0.118 | ||
D | O | −0.084 | −0.088 | +0.012 | −0.014 | −0.005 | |
Q | −1.171 | −1.277 | −1.184 | −1.280 | −1.296 | ||
P | +0.046 | −0.002 | +0.044 | −0.038 | −0.014 | ||
2 | D | A | +0.184 | +0.118 | +0.209 | +0.101 | +0.139 |
Q | +1.357 | +1.869 | +1.275 | +1.767 | +1.850 | ||
P | +0.022 | +0.002 | +0.008 | −0.030 | −0.008 | ||
D | O | +0.044 | +0.038 | +0.050 | +0.015 | +0.022 | |
Q | −1.103 | −1.287 | −1.167 | −1.343 | −1.365 | ||
P | +0.098 | +0.094 | +0.080 | +0.090 | +0.080 | ||
3 | D | B | −0.020 | −0.001 | - | - | - |
Q | +2.116 | +2.172 | +2.335 | +2.365 | +2.348 | ||
P | +0.124 | +0.102 | +0.108 | +0.104 | +0.096 | ||
D | O | −0.012 | −0.002 | - | - | - | |
Q | −1.148 | −1.331 | −1.207 | −1.371 | −1.384 | ||
P | +0.036 | +0.002 | +0.018 | −0.034 | −0.010 |
Surface | Termination | Ecleavage | Erelaxation | Esurface |
---|---|---|---|---|
PbTiO3 (001) | TiO2 | 1.02 | −0.28 | 0.74 |
PbO | −0.19 | 0.83 | ||
BaTiO3 (001) | TiO2 | 1.30 | −0.23 | 1.07 |
BaO | −0.11 | 1.19 | ||
SrTiO3 (001) | TiO2 | 1.39 | −0.16 | 1.23 |
SrO | −0.24 | 1.15 | ||
PbZrO3 (001) | ZrO2 | 1.20 | −0.27 | 0.93 |
PbO | −0.20 | 1.00 | ||
SrZrO3 (001) | ZrO2 | 1.56 | −0.32 | 1.24 |
SrO | −0.43 | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eglitis, R.I.; Piskunov, S.; Popov, A.I.; Purans, J.; Bocharov, D.; Jia, R. Systematic Trends in Hybrid-DFT Computations of BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) Hetero Structures. Condens. Matter 2022, 7, 70. https://doi.org/10.3390/condmat7040070
Eglitis RI, Piskunov S, Popov AI, Purans J, Bocharov D, Jia R. Systematic Trends in Hybrid-DFT Computations of BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) Hetero Structures. Condensed Matter. 2022; 7(4):70. https://doi.org/10.3390/condmat7040070
Chicago/Turabian StyleEglitis, Roberts I., Sergei Piskunov, Anatoli I. Popov, Juris Purans, Dmitry Bocharov, and Ran Jia. 2022. "Systematic Trends in Hybrid-DFT Computations of BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) Hetero Structures" Condensed Matter 7, no. 4: 70. https://doi.org/10.3390/condmat7040070
APA StyleEglitis, R. I., Piskunov, S., Popov, A. I., Purans, J., Bocharov, D., & Jia, R. (2022). Systematic Trends in Hybrid-DFT Computations of BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) Hetero Structures. Condensed Matter, 7(4), 70. https://doi.org/10.3390/condmat7040070