Evolution of the Chern Gap in Kagome Magnet HoMn6Sn6−xGex
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Set of fractionally charged fermions | |
Set of Chern fermions |
References
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef] [Green Version]
- Bansil, A.; Lin, H.; Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 2016, 88, 021004. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.C.; et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 2015, 349, 613–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, B.Q.; Weng, H.M.; Fu, B.B.; Wang, X.P.; Miao, H.; Ma, J.; Richard, P.; Huang, X.C.; Zhao, L.X.; Chen, G.F.; et al. Experimental Discovery of Weyl Semimetal TaAs. Phys. Rev. X 2015, 5, 031013. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.M.; Xu, S.Y.; Belopolski, I.; Lee, C.C.; Chang, G.; Wang, B.; Alidoust, N.; Bian, G.; Neupane, M.; Zhang, C.; et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 2015, 6, 7373. [Google Scholar] [CrossRef]
- Weng, H.; Fang, C.; Fang, Z.; Bernevig, B.A.; Dai, X. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Phys. Rev. X 2015, 5, 011029. [Google Scholar] [CrossRef]
- Nielsen, H.; Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 1983, 130, 389–396. [Google Scholar] [CrossRef]
- Wan, X.; Turner, A.M.; Vishwanath, A.; Savrasov, S.Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 2011, 83, 205101. [Google Scholar] [CrossRef] [Green Version]
- Neupane, M.; Belopolski, I.; Hosen, M.M.; Sanchez, D.S.; Sankar, R.; Szlawska, M.; Xu, S.Y.; Dimitri, K.; Dhakal, N.; Maldonado, P.; et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 2016, 93, 201104. [Google Scholar] [CrossRef] [Green Version]
- Hosen, M.M.; Dimitri, K.; Belopolski, I.; Maldonado, P.; Sankar, R.; Dhakal, N.; Dhakal, G.; Cole, T.; Oppeneer, P.M.; Kaczorowski, D.; et al. Tunability of the topological nodal-line semimetal phase in ZrSiX -type materials (X = S, Se, Te ). Phys. Rev. B 2017, 95, 161101. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Tang, Z.; Liu, J.; Liu, X.; Zhu, Y.; Graf, D.; Myhro, K.; Tran, S.; Lau, C.N.; Wei, J.; et al. Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe. Phys. Rev. Lett. 2016, 117, 016602. [Google Scholar] [CrossRef] [Green Version]
- Takane, D.; Wang, Z.; Souma, S.; Nakayama, K.; Trang, C.X.; Sato, T.; Takahashi, T.; Ando, Y. Dirac-node arc in the topological line-node semimetal HfSiS. Phys. Rev. B 2016, 94, 121108. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhu, Y.L.; Graf, D.; Tang, Z.J.; Liu, J.Y.; Mao, Z.Q. Quantum oscillation studies of the topological semimetal candidate ZrGeM(M = S, Se, Te). Phys. Rev. B 2017, 95, 205134. [Google Scholar] [CrossRef] [Green Version]
- Hosen, M.M.; Dimitri, K.; Aperis, A.; Maldonado, P.; Belopolski, I.; Dhakal, G.; Kabir, F.; Sims, C.; Hasan, M.Z.; Kaczorowski, D.; et al. Observation of gapless Dirac surface states in ZrGeTe. Phys. Rev. B 2018, 97, 121103. [Google Scholar] [CrossRef] [Green Version]
- Hosen, M.M.; Dhakal, G.; Dimitri, K.; Maldonado, P.; Aperis, A.; Kabir, F.; Sims, C.; Riseborough, P.; Oppeneer, P.M.; Kaczorowski, D.; et al. Discovery of topological nodal-line fermionic phase in a magnetic material GdSbTe. Sci. Rep. 2018, 8, 13283. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.Y.; Alidoust, N.; Chang, G.; Lu, H.; Singh, B.; Belopolski, I.; Sanchez, D.; Zhang, X.; Bian, G.; Zheng, H.; et al. Discovery of Lorentz-violating Weyl fermion semimetal state in LaAlGe materials. arXiv 2016, arXiv:1603.07318. [Google Scholar]
- Zheng, W.; Schönemann, R.; Aryal, N.; Zhou, Q.; Rhodes, D.; Chiu, Y.C.; Chen, K.W.; Kampert, E.; Förster, T.; Martin, T.J.; et al. Detailed study on the Fermi surfaces of the type-II Dirac semimetallic candidates PdTe2 and PtTe2. Phys. Rev. B 2018, 97, 235154. [Google Scholar] [CrossRef] [Green Version]
- Haldane, F.D.M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 1988, 61, 2015–2018. [Google Scholar] [CrossRef]
- Jotzu, G.; Messer, M.; Desbuquois, R.; Lebrat, M.; Uehlinger, T.; Greif, D.; Esslinger, T. Experimental realization of the topological Haldane model with ultracold fermions. Nature 2014, 515, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Skirlo, S.A.; Lu, L.; Igarashi, Y.; Yan, Q.; Joannopoulos, J.; Soljačić, M. Experimental Observation of Large Chern Numbers in Photonic Crystals. Phys. Rev. Lett. 2015, 115, 253901. [Google Scholar] [CrossRef]
- Thonhauser, T.; Vanderbilt, D. Insulator/Chern-insulator transition in the Haldane model. Phys. Rev. B 2006, 74, 235111. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.M.; Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 2009, 80, 113102. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, N.J.; Mazin, I.I. Topology and correlations on the kagome lattice. Nat. Mater. 2020, 19, 137–138. [Google Scholar] [CrossRef]
- Kang, M.; Ye, L.; Fang, S.; You, J.S.; Levitan, A.; Han, M.; Facio, J.I.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 2019, 19, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Nayak, A.K.; Fischer, J.E.; Sun, Y.; Yan, B.; Karel, J.; Komarek, A.C.; Shekhar, C.; Kumar, N.; Schnelle, W.; Kübler, J.; et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2016, 2, e1501870. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Sun, Y.; Zhang, Y.; Shi, W.J.; Parkin, S.S.P.; Yan, B. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 2017, 19, 015008. [Google Scholar] [CrossRef]
- Idrissi, B.E.; Venturini, G.; Malaman, B.; Fruchart, D. Magnetic structures of TbMn6Sn6 and HoMn6Sn6 compounds from neutron diffraction study. J. Less Common Met. 1991, 175, 143–154. [Google Scholar] [CrossRef]
- Venturini, G.; Welter, R.; Malaman, B. Room temperature variation in the threshold fields in RxY1 -xMn6Sn6 (R = Ce, Nd, Sm, Gd, Ho) solid solutions. J. Alloys Compd. 1993, 197, 101–104. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhao, P.; Cheng, Z.H.; Li, R.W.; Sun, J.R.; Zhang, H.W.; Shen, B.G. Magnetism and giant magnetoresistance ofYMn6Sn6-xGax (x = 0–1.8) compounds. Phys. Rev. B 2001, 64, 212404. [Google Scholar] [CrossRef]
- Shao-ying, Z.; Peng, Z.; Run-wei, L.; Sun Ji-rong, C.Z.h.; Hong-wei, Z.; Bao-gen, S. Structure, magnetic properties and giant magnetoresistance of YMn6Sn6-xGax (x = 0–0.6) compounds. Chin. Phys. 2001, 10, 345–348. [Google Scholar] [CrossRef]
- Mazet, T.; Ihou-Mouko, H.; Marache, J.F.; Malaman, B. Magnetic properties and 119Sn hyperfine interaction parameters of LiMn6Sn6. Eur. Phys. J. B 2006, 51, 173–180. [Google Scholar] [CrossRef]
- Mazet, T.; Ihou-Mouko, H.; Marêché, J.; Malaman, B. Magnetic and magnetocaloric properties of Y bMn6Sn6-xInx. Solid State Commun. 2007, 142, 659–663. [Google Scholar] [CrossRef]
- Yin, J.X.; Ma, W.; Cochran, T.A.; Xu, X.; Zhang, S.S.; Tien, H.J.; Shumiya, N.; Cheng, G.; Jiang, K.; Lian, B.; et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 2020, 583, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, N.J.; Dally, R.L.; Poudel, L.; Jones, D.C.; Michel, D.; Magar, N.T.; Bleuel, M.; McGuire, M.A.; Jiang, J.S.; Mitchell, J.F.; et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. Sci. Adv. 2020, 6, eabe2680. [Google Scholar] [CrossRef]
- Chen, D.; Le, C.; Fu, C.; Lin, H.; Schnelle, W.; Sun, Y.; Felser, C. Large anomalous Hall effect in the kagome ferromagnet LiMn6Sn6. Phys. Rev. B 2021, 103, 144410. [Google Scholar] [CrossRef]
- Ma, W.; Xu, X.; Yin, J.X.; Yang, H.; Zhou, H.; Cheng, Z.J.; Huang, Y.; Qu, Z.; Wang, F.; Hasan, M.Z.; et al. Rare Earth Engineering in RMn6Sn6 (R=Gd-Tm, Lu) Topological Kagome Magnets. Phys. Rev. Lett. 2021, 126, 246602. [Google Scholar] [CrossRef]
- Xu, X.; Yin, J.X.; Ma, W.; Tien, H.J.; Qiang, X.B.; Reddy, P.V.S.; Zhou, H.; Shen, J.; Lu, H.Z.; Chang, T.R.; et al. Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6. Nat. Commun. 2022, 13. [Google Scholar] [CrossRef]
- Sarma, S.D.; Freedman, M.; Nayak, C. Topologically Protected Qubits from a Possible Non-Abelian Fractional Quantum Hall State. Phys. Rev. Lett. 2005, 94, 166802. [Google Scholar] [CrossRef] [Green Version]
- Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Sarma, S.D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083–1159. [Google Scholar] [CrossRef] [Green Version]
- Stern, A.; Lindner, N.H. Topological Quantum Computation—From Basic Concepts to First Experiments. Science 2013, 339, 1179–1184. [Google Scholar] [CrossRef]
- Halperin, B.I.; Stern, A.; Neder, I.; Rosenow, B. Theory of the Fabry-Pérot quantum Hall interferometer. Phys. Rev. B 2011, 83, 155440. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, J.; Liang, S.; Gardner, G.C.; Manfra, M.J. Direct observation of anyonic braiding statistics. Nat. Phys. 2020, 16, 931–936. [Google Scholar] [CrossRef]
- Bartolomei, H.; Kumar, M.; Bisognin, R.; Marguerite, A.; Berroir, J.M.; Bocquillon, E.; Plaçais, B.; Cavanna, A.; Dong, Q.; Gennser, U.; et al. Fractional statistics in anyon collisions. Science 2020, 368, 173–177. [Google Scholar] [CrossRef]
- Lefèvre, C.; Venturini, G. A magnetic study of HoMn6Sn6xGax single crystals (0.14 < x < 1.89). J. Magn. Magn. Mater. 2004, 268, 374–379. [Google Scholar] [CrossRef]
- Guo, G.H.; Zhang, H.B. Magnetocrystalline anisotropy and spin reorientation transition of HoMn6Sn6 compound. J. Alloys Compd. 2007, 429, 46–49. [Google Scholar] [CrossRef]
- Kabir, F.; Filippone, R.; Dhakal, G.; Lee, Y.; Poudel, N.; Casey, J.; Sakhya, A.P.; Regmi, S.; Smith, R.; Manfrinetti, P.; et al. Unusual magnetic and transport properties in HoMn6Sn6 kagome magnet. arXiv 2021, arXiv:2110.14155. [Google Scholar] [CrossRef]
- Zeng, H.; Yu, G.; Luo, X.; Chen, C.; Fang, C.; Ma, S.; Mo, Z.; Shen, J.; Yuan, M.; Zhong, Z. Large anomalous Hall effect in kagomé ferrimagnetic HoMn6Sn6 single crystal. J. Alloys Compd. 2022, 899, 163356. [Google Scholar] [CrossRef]
- Cochran, T.A.; Chang, G.; Belopolski, I.; Manna, K.; Sanchez, D.S.; Chéng, Z.; Yin, J.X.; Borrmann, H.; Denlinger, J.; Felser, C.; et al. A Fermi Arc Quantum Ladder. arXiv 2020, arXiv:2004.11365. [Google Scholar]
- Mostofi, A.A.; Yates, J.R.; Pizzi, G.; Lee, Y.S.; Souza, I.; Vanderbilt, D.; Marzari, N. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2014, 185, 2309–2310. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef] [Green Version]
- Sims, C. CIF2WAN: A Tool to Generate Input Files for Electronic Structure Calculations with Wannier90. arXiv 2020, arXiv:2006.12647. [Google Scholar]
- Sancho, M.P.L.; Sancho, J.M.L.; Sancho, J.M.L.; Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys. 1985, 15, 851. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Song, H.F.; Troyer, M.; Soluyanov, A.A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Rauch, T.; Olsen, T.; Vanderbilt, D.; Souza, I. Mirror Chern numbers in the hybrid Wannier representation. Phys. Rev. B 2021, 103, 195103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sims, C. Evolution of the Chern Gap in Kagome Magnet HoMn6Sn6−xGex. Condens. Matter 2022, 7, 40. https://doi.org/10.3390/condmat7020040
Sims C. Evolution of the Chern Gap in Kagome Magnet HoMn6Sn6−xGex. Condensed Matter. 2022; 7(2):40. https://doi.org/10.3390/condmat7020040
Chicago/Turabian StyleSims, Christopher. 2022. "Evolution of the Chern Gap in Kagome Magnet HoMn6Sn6−xGex" Condensed Matter 7, no. 2: 40. https://doi.org/10.3390/condmat7020040
APA StyleSims, C. (2022). Evolution of the Chern Gap in Kagome Magnet HoMn6Sn6−xGex. Condensed Matter, 7(2), 40. https://doi.org/10.3390/condmat7020040