Advances in Authentication, Authorization and Privacy for Securing Smart Communications
1. Introduction
2. Contributions
3. Conclusions and Future Scope
Conflicts of Interest
List of Contributions
- AlJanah, S.; Zhang, N.; Tay, S.W. Optimizing Group Multi-Factor Authentication for Secure and Efficient IoT Device Communications. Cryptography 2025, 9, 35. https://doi.org/10.3390/cryptography9020035.
- Lin, I.-C.; Lin, K.-Y.; Wu, N.-I.; Hwang, M.-S. A Quantum Key Distribution for Securing Smart Grids. Cryptography 2025, 9, 28. https://doi.org/10.3390/cryptography9020028.
- Ou, H.-H.; Chen, G.-Y.; Lin, I.-C. A Self-Sovereign Identity Blockchain Framework for Access Control and Transparency in Financial Institutions. Cryptography 2025, 9, 9. https://doi.org/10.3390/cryptography9010009.
- Lizama-Pérez, L.A. A Matrix Multiplication Approach to Quantum-Safe Cryptographic Systems. Cryptography 2024, 8, 56. https://doi.org/10.3390/cryptography8040056.
- Aziz, S.; Shoukat, I.A.; Iftikhar, M.; Murtaza, M.; Alenezi, A.M.; Lee, C.-C.; Taj, I. Next-Generation Block Ciphers: Achieving Superior Memory Efficiency and Cryptographic Robustness for IoT Devices. Cryptography 2024, 8, 47. https://doi.org/10.3390/cryptography8040047.
- Chang, C.-C.; Xu, S.; Gao, K.; Chang, C.-C. Cryptanalysis of Dual-Stage Permutation Encryption Using Large-Kernel Convolutional Neural Network and Known Plaintext Attack. Cryptography 2024, 8, 41. https://doi.org/10.3390/cryptography8030041.
- Kuznetsov, O.; Rusnak, A.; Yezhov, A.; Kuznetsova, K.; Kanonik, D.; Domin, O. Evaluating the Security of Merkle Trees: An Analysis of Data Falsification Probabilities. Cryptography 2024, 8, 33. https://doi.org/10.3390/cryptography8030033.
- Kuznetsov, O.; Rusnak, A.; Yezhov, A.; Kanonik, D.; Kuznetsova, K.; Domin, O. Efficient and Universal Merkle Tree Inclusion Proofs via OR Aggregation. Cryptography 2024, 8, 28. https://doi.org/10.3390/cryptography8030028.
- Kuznetsov, O.; Poluyanenko, N.; Frontoni, E.; Kandiy, S. Enhancing Smart Communication Security: A Novel Cost Function for Efficient S-Box Generation in Symmetric Key Cryptography. Cryptography 2024, 8, 17. https://doi.org/10.3390/cryptography8020017.
- Kabil, A.M.; Aslan, H.; Azer, M. Cryptanalysis of Two Conditional Privacy Preserving Authentication Schemes for Vehicular Ad Hoc Networks. Cryptography 2024, 8, 4. https://doi.org/10.3390/cryptography8010004.
- Ramesh, R.K.; Dodmane, R.; Shetty, S.; Aithal, G.; Sahu, M.; Sahu, A.K. A Novel and Secure Fake-Modulus Based Rabin-Ӡ Cryptosystem. Cryptography 2023, 7, 44. https://doi.org/10.3390/cryptography7030044.
References
- Sun, Q.; Nan, G.; Li, T.; Wu, H.; Zhong, Z.; Tao, X. A Secure Digital Signature Scheme for Deep Learning-Based Semantic Communication Systems. IEEE Wirel. Commun. Lett. 2025, 14, 1119–1123. [Google Scholar] [CrossRef]
- Lee, C.H.; Hwang, M.S.; Yang, W.P. Enhanced privacy and authentication for the global system for mobile communications. Wirel. Netw. 1999, 5, 231–243. [Google Scholar] [CrossRef]
- Das, A.K. A secure and effective user authentication and privacy preserving protocol with smart cards for wireless communications. Netw. Sci. 2013, 2, 12–27. [Google Scholar] [CrossRef]
- Imoize, A.L.; Adedeji, O.; Tandiya, N.; Shetty, S. 6G enabled smart infrastructure for sustainable society: Opportunities, challenges, and research roadmap. Sensors 2021, 21, 1709. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.M. 6G wireless communication assisted security management using cloud edge computing. Expert. Systems. 2023, 40, e13061. [Google Scholar] [CrossRef]
- Ziegler, V.; Schneider, P.; Viswanathan, H.; Montag, M.; Kanugovi, S.; Rezaki, A. Security and trust in the 6G era. IEEE Access 2021, 9, 142314–142327. [Google Scholar] [CrossRef]
- Abiodun, M.K.; Imoize, A.L.; Awotunde, J.B.; Lee, C.C.; Adeniyi, A.E.; Chioma, U.; Li, C.T. Analysis of a Double-stage Encryption Scheme Using Hybrid Cryptography to Enhance Data Security in Cloud Computing Systems. J. Libr. Inf. Stud. 2023, 21, 1–26. [Google Scholar]
- Kartalopoulos, S.V. A primer on cryptography in communications. IEEE Commun. Mag. 2006, 44, 146–151. [Google Scholar] [CrossRef]
- Zeng, K.; Govindan, K.; Mohapatra, P. Non-cryptographic authentication and identification in wireless networks [security and privacy in emerging wireless networks]. IEEE Wirel. Commun. 2010, 17, 56–62. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Yu, Z. Privacy-preserving authentication in wireless IoT: Applications, approaches, and challenges. IEEE Wirel. Commun. 2018, 25, 60–67. [Google Scholar] [CrossRef]
- Rahman, M.G.; Imai, H. Security in wireless communication. Wirel. Pers. Commun. 2002, 22, 213–228. [Google Scholar] [CrossRef]
- CRC Press. Advancements in Cybersecurity: Next-Generation Systems and Applications, 1st ed.; Imoize, A.L., Kuznetsov, O., Lemeshko, O., Yeremenko, O., Eds.; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar] [CrossRef]
- Sklavos, N.; Zhang, X. (Eds.) Wireless Security and Cryptography: Specifications and Implementations, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Khasawneh, M.; Agarwal, A. A secure and efficient authentication mechanism applied to cognitive radio networks. IEEE Access 2017, 5, 15597–155608. [Google Scholar] [CrossRef]
- Lin, H.Y.; Harn, L. Authentication protocols for personal communication systems. ACM SIGCOMM Comput. Commun. Rev. 1995, 25, 256–261. [Google Scholar] [CrossRef]
- Huang, X.; Yoshizawa, T.; Baskaran, S.B. Authentication mechanisms in the 5G system. J. ICT Stand. 2021, 9, 61–78. [Google Scholar] [CrossRef]
- He, D.; Ma, M.; Zhang, Y.; Chen, C.; Bu, J. A strong user authentication scheme with smart cards for wireless communications. Comput. Commun. 2011, 34, 367–374. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, J.; Zhong, H.; Chen, Z.; Liu, L. PA-CRT: Chinese remainder theorem based conditional privacy-preserving authentication scheme in vehicular ad-hoc networks. IEEE Trans. Dependable Secur. Comput. 2019, 18, 722–735. [Google Scholar] [CrossRef]
- Xiao, L.; Xia, X.G.; Wang, W. Multi-stage robust Chinese remainder theorem. IEEE Trans. Signal Process. 2014, 62, 4772–4785. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, R.; Wang, Y.; Zhou, F.; Luo, X. CPPA-D: Efficient conditional privacy-preserving authentication scheme with double-insurance in VANETs. IEEE Trans. Veh. Technol. 2021, 70, 3456–3468. [Google Scholar] [CrossRef]
- Tao, Q.; Ding, H.; Jiang, T.; Cui, X. B-DSPA: A Blockchain-based Dynamically Scalable Privacy-Preserving Authentication Scheme in Vehicular Ad-hoc Networks. IEEE Internet Things J. 2023, 11, 1385–1397. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-C.; Le, T.-V.; Li, C.-T.; Do, D.-T.; Imoize, A.L. Advances in Authentication, Authorization and Privacy for Securing Smart Communications. Cryptography 2025, 9, 43. https://doi.org/10.3390/cryptography9020043
Lee C-C, Le T-V, Li C-T, Do D-T, Imoize AL. Advances in Authentication, Authorization and Privacy for Securing Smart Communications. Cryptography. 2025; 9(2):43. https://doi.org/10.3390/cryptography9020043
Chicago/Turabian StyleLee, Cheng-Chi, Tuan-Vinh Le, Chun-Ta Li, Dinh-Thuan Do, and Agbotiname Lucky Imoize. 2025. "Advances in Authentication, Authorization and Privacy for Securing Smart Communications" Cryptography 9, no. 2: 43. https://doi.org/10.3390/cryptography9020043
APA StyleLee, C.-C., Le, T.-V., Li, C.-T., Do, D.-T., & Imoize, A. L. (2025). Advances in Authentication, Authorization and Privacy for Securing Smart Communications. Cryptography, 9(2), 43. https://doi.org/10.3390/cryptography9020043