Partial Exposure Attacks on a New RSA Variant
Abstract
:1. Introduction
2. Preliminaries
2.1. Lattice Basis Reduction and Coppersmith’s Method
2.2. Coppersmith’s Method
- 1.
- .
- 2.
- , , for .
2.3. The Scheme of Cotan and Teşeleanu
Key Generation
- 1.
- Select a positive integer and a security size .
- 2.
- Generate randomly two distinct large prime numbers of size .
- 3.
- Calculate and .
- 4.
- Choose an integer a for which is irreducible in , , and .
- 5.
- Select an integer e such that and compute d, the inverse of e modulo .
- 6.
- The public key is and the private key is .
Encryption
- 1.
- Represent the plaintext as a polynomial
- 2.
- Compute .
- 3.
- The ciphertext is .
Decryption
3. Solving the Equation
3.1. The New Method
3.2. A Numerical Example
4. Partial Key Attack on the Scheme of Cotan and Teşeleanu with Known LSBs
5. Cryptanalysis of the Scheme of Cotan and Teşeleanu with a Known Approximation of One of the Primes
6. Cryptanalysis of the Scheme of Cotan and Teşeleanu with Primes Sharing MSBs
7. Cryptanalysis of the Scheme of Cotan and Teşeleanu with Primes Sharing LSBs
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RSA | Rivest, Shamir, Adleman |
KMOV | Koyama, Maurer, Okamoto, Vanstone |
CRT | Chinese Remainder Theorem |
MSBs | most significant bits |
LSBs | least significant bits |
LLL | Lenstra, Lenstra, and Lovász |
References
- Rivest, R.; Shamir, A.; Adleman, L. A Method for Obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- Wiener, M. Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 1990, 36, 553–558. [Google Scholar] [CrossRef]
- Boneh, D.; Durfee, G. Cryptanalysis of RSA with private key d less than N0.292. In Advances in Cryptology-Eurocrypt’99, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1592, pp. 1–11. [Google Scholar]
- Quisquater, J.J.; Couvreur, C. Fast decipherment algorithm for RSA public-key cryptosystem. Electron. Lett. 1982, 18, 905–907. [Google Scholar] [CrossRef]
- Koyama, K.; Maurer, U.M.; Okamoto, T.; Vanstone, S.A. New public-key schemes based on elliptic curves over the ring Zn. In Advances in Cryptology—CRYPTO 1991, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1991; Volume 576, pp. 252–266. [Google Scholar]
- Collins, T.; Hopkins, D.; Langford, S.; Sabin, M. Public Key Cryptographic Apparatus and Method. US Patent 5,848,159, 16 January 1997. [Google Scholar]
- Takagi, T. A fast RSA-type public-key primitive modulo pkq using Hensel lifting. IEICE Trans. 2004, 87, 94–101. [Google Scholar]
- Murru, N.; Saettone, F.M. A Novel RSA-Like Cryptosystem Based on a Generalization of the Rédei Rational Functions. In Number-Theoretic Methods in Cryptology. NuTMiC 2017. Lecture Notes in Computer Science; Kaczorowski, J., Pieprzyk, J., Pomykala, J., Eds.; Springer: Cham, Switzerland, 2018; Volume 10737. [Google Scholar]
- Feng, Y.; Nitaj, A.; Pan, Y. Partial prime factor exposure attacks on some RSA variants. In Theoretical Computer Science; Elsevier: Amsterdam, The Netherlands, 2024; Volume 999, p. 114549. [Google Scholar]
- Nitaj, A.; Ariffin, M.R.B.K.; Adenan, N.N.H.; Abu, N.A. Classical Attacks on a Variant of the RSA Cryptosystem. In LATINCRYPT 2021. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12912, pp. 151–167. [Google Scholar]
- Shi, G.; Wang, G.; Gu, D. Further Cryptanalysis of a Type of RSA Variants. In Information Security. ISC 2022. Lecture Notes in Computer Science; Susilo, W., Chen, X., Guo, F., Zhang, Y., Intan, R., Eds.; Springer: Cham, Switzerland, 2022; Volume 13640. [Google Scholar]
- Zheng, M.; Kunihiro, N.; Yao, Y. Cryptanalysis of the RSA variant based on cubic Pell equation. Theor. Comput. Sci. 2021, 889, 135–144. [Google Scholar] [CrossRef]
- Cotan, P.; Teşeleanu, G. Continued fractions applied to a family of RSA-like cryptosystems. In Information Security Practice and Experience. ISPEC 2022. Lecture Notes in Computer Science; Su, C., Gritzalis, D., Piuri, V., Eds.; Springer: Cham, Switzerland, 2022; Volume 13620, pp. 589–605. [Google Scholar]
- Nitaj, A.; Adenan, N.N.H.; Ariffin, M.R.K. Cryptanalysis of a New Variant of the RSA Cryptosystem. In Progress in Cryptology—AFRICACRYPT 2024. AFRICACRYPT 2024. Lecture Notes in Computer Science; Vaudenay, S., Petit, C., Eds.; Springer: Cham, Switzerland, 2024; Volume 14861. [Google Scholar]
- Lenstra, A.K.; Lenstra, H.W.; Lovász, L. Factoring polynomials with rational coefficients. Math. Ann. 1982, 261, 513–534. [Google Scholar] [CrossRef]
- May, A. New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. Thesis, University of Paderborn, Paderborn, Germany, 2003. [Google Scholar]
- Coppersmith, D. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 1997, 10, 233–260. [Google Scholar] [CrossRef]
- Howgrave-Graham, N. Finding small roots of univariate modular equations revisited. In Cryptography and Coding, LNCS 1355; Springer: Berlin/Heidelberg, Germany, 1997; pp. 131–142. [Google Scholar]
- Jochemsz, E.; May, A. A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants. In ASIACRYPT 2006, LNCS 4284; Springer: Berlin/Heidelberg, Germany, 2006; pp. 267–282. [Google Scholar]
- Peng, L.; Hu, L.; Lu, Y.; Wei, H. An improved analysis on three variants of the RSA cryptosystem. In Proceedings of the International Conference on Information Security and Cryptology, Beijing, China, 4–6 November 2016; Springer: Cham, Switzerland, 2016; Volume 10143, pp. 140–149. [Google Scholar]
- Kunihiro, N. On Optimal Bounds of Small Inverse Problems and Approximate GCD Problems with Higher Degree. In Information Security. ISC 2012. Lecture Notes in Computer Science; Gollmann, D., Freiling, F.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7483. [Google Scholar]
- Nitaj, A.; Ariffin, M.R.K.; Nassr, D.I.; Bahig, H.M. New attacks on the RSA cryptosystem. In AFRICACRYPT 2014, LNCS 8469; Pointcheval, D., Vergnaud, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; p. 178198. [Google Scholar]
- Steinfeld, R.; Zheng, Y. On the Security of RSA with Primes Sharing Least-Significant Bits. Appl. Algebra Eng. Commun. Comput. 2004, 15, 179200. [Google Scholar] [CrossRef]
1 | y | x | z | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
★ | 0 | ★ | ★ | ★ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | ★ | 0 | ★ | ★ | 0 | 0 | 0 | ★ | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | ★ | 0 | 0 | ★ | ★ | ★ | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | ★ | 0 | 0 | ★ | ★ | 0 | 0 | ★ | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | ★ | 0 | 0 | ★ | 0 | 0 | ★ | ★ | 0 | 0 | ||
★ | 0 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 0 | ★ | ★ | ★ | 0 | ||
0 | ★ | 0 | ★ | ★ | 0 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani, M.; Nitaj, A.; Ziane, M. Partial Exposure Attacks on a New RSA Variant. Cryptography 2024, 8, 44. https://doi.org/10.3390/cryptography8040044
Rahmani M, Nitaj A, Ziane M. Partial Exposure Attacks on a New RSA Variant. Cryptography. 2024; 8(4):44. https://doi.org/10.3390/cryptography8040044
Chicago/Turabian StyleRahmani, Mohammed, Abderrahmane Nitaj, and Mhammed Ziane. 2024. "Partial Exposure Attacks on a New RSA Variant" Cryptography 8, no. 4: 44. https://doi.org/10.3390/cryptography8040044
APA StyleRahmani, M., Nitaj, A., & Ziane, M. (2024). Partial Exposure Attacks on a New RSA Variant. Cryptography, 8(4), 44. https://doi.org/10.3390/cryptography8040044